Hole conductivity in the electrolyte of proton-conducting SOFC: Mathematical model and experimental investigation

2019 ◽  
Vol 801 ◽  
pp. 343-351 ◽  
Author(s):  
Qingping Zhang ◽  
Yuxiang Guo ◽  
Jinwen Ding ◽  
Sihan Xia
2019 ◽  
Vol 44 (9) ◽  
pp. 8095-8111
Author(s):  
Baojin Wang ◽  
Fushen Ren ◽  
Zhigang Yao ◽  
Tiancheng Fang

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
H. B. Ma ◽  
B. Borgmeyer ◽  
P. Cheng ◽  
Y. Zhang

A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the vapor bubble as the gas spring for the oscillating motions including effects of operating temperature, nonlinear vapor bulk modulus, and temperature difference between the evaporator and the condenser. Combining the oscillating motion predicted by the model, a mathematical model predicting the temperature difference between the evaporator and the condenser is developed including the effects of the forced convection heat transfer due to the oscillating motion, the confined evaporating heat transfer in the evaporating section, and the thin film condensation in the condensing section. In order to verify the mathematical model, an experimental investigation was conducted on a copper oscillating heat pipe with eight turns. Experimental results indicate that there exists an onset power input for the excitation of oscillating motions in an oscillating heat pipe, i.e., when the input power or the temperature difference from the evaporating section to the condensing section was higher than this onset value the oscillating motion started, resulting in an enhancement of the heat transfer in the oscillating heat pipe. Results of the combined theoretical and experimental investigation will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.


2020 ◽  
Vol 17 ◽  
pp. 103170
Author(s):  
Fangping Ye ◽  
Xiangjun Ren ◽  
Guoping Liao ◽  
Tao Xiong ◽  
Jinyue Xu

Author(s):  
Yuelei Yang ◽  
Frank M. Gerner ◽  
H. Thurman Henderson

This paper focuses on the investigation of the liquid-gas (or vapor) interface, which occurs in very small diameter pores. A mathematical model is built to formulate the movements of a liquid column trapped in a capillary pore. The Navier-Stokes equations are applied to the liquid side with assumed no-slip conditions, while the Young-Laplace equation is used to formulate the shape of the interface. This theoretical model calculates both velocity profiles in the liquid side and transient profiles of the interface itself; and of particular interest, it predicts the pressure difference, oscillation frequency and amplitude required to burst this interface. These predicted parameters are examined by the experiments with both oscillating Coherent Porous Silicon (CPS) wicks and porous plastic wicks. This research helps better understanding the phenomena such as multiphase flow in porous media or de-watering process that happens in vibro-separators.


Author(s):  
L. A. Adamovich ◽  
B. A. Gabaraev ◽  
S. L. Solovjev ◽  
S. B. Shpansky

In the paper the results of study in heat transfer capacity of the themosyphon mock-up which is considered as an intermediate circuit of the reactor under design, are presented. The mock-up design, the test rig and the experimental results are described. It is shown that the simplest mathematical model describes the processes of power transfer by the thermosyphon under certain conditions.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
David A. Scott ◽  
Alexandre Lamoureux ◽  
Bantwal R. Baliga

Steady, laminar, mixed convection in a straight and vertically oriented pipe conveying slurries of a microencapsulated phase-change material (MCPCM) suspended in distilled water (flowing upwards), with essentially uniform heat flux imposed on its outside surface, are considered. A cost-effective homogenous mathematical model is proposed and shown to be applicable to the aforementioned mixed convection phenomena with slurries of a sample MCPCM. Correlations for the effective properties of the sample MCPCM slurries and procedures for their implementation are presented. The energy equation, in which the latent-heat effects are handled using an effective specific heat, is cast in a form akin to that of a general advection-diffusion transport equation. Difficulties with the standard definition of bulk temperature when the specific heat of the fluid changes significantly with temperature are elaborated, and a modified bulk temperature that overcomes these difficulties is proposed. A finite volume method (FVM) was used to solve the mathematical model. The proposed model and FVM were validated by using them to solve problems involving slurries of the sample MCPCM, and comparing the results to those of a complementary experimental investigation. The numerical results compare very well with those of the complementary experimental investigation. They also demonstrate the need for optimizing the various parameters involved, if full benefits of the MCPCM slurries are to be achieved for specific applications.


Sign in / Sign up

Export Citation Format

Share Document