scholarly journals Predictions of long-term creep life for the family of 9–12 wt% Cr martensitic steels

2020 ◽  
Vol 815 ◽  
pp. 152417 ◽  
Author(s):  
Amit K. Verma ◽  
Jeffrey A. Hawk ◽  
Vyacheslav Romanov ◽  
Jennifer L.W. Carter
Author(s):  
Kenji Kako ◽  
Susumu Yamada ◽  
Masatsugu Yaguchi ◽  
Yusuke Minami

Type IV damage has been found at several ultra-supercritical (USC) plants that used high-chromium martensitic steels in Japan, and the assessment of the remaining life of the steels is important for electric power companies. The assessment of the remaining life needs long-term creep data for over 10 years, but such data are limited. We have attempted to assess the remaining life by creep tests and by microstructural observation of Grade 91 steels welded pipes which were used in USC plants for over 10 years. Following the results of microstructural observation of USC plant pipes, we find that microstructures, especially distribution of MX precipitates, have large effect on the creep life of Grade 91 steels.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Seok Jun Kang ◽  
Hoomin Lee ◽  
Jae Boong Choi ◽  
Moon Ki Kim

Ultrasuper critical (USC) thermal plants are now in operation around the globe. Their applications include superheaters and reheaters, which generally require high temperature/pressure conditions. To withstand these harsh conditions, an austenitic heat-resistant HR3C (ASME TP310NbN) steel was developed for metal creep resistance. As the designed life time of a typical thermal plant is 150,000 h, it is very important to predict long-term creep behavior. In this study, a three-state variable continuum damage model (CDM) was modified for better estimation of long-term creep life. Accelerated uniaxial creep tests were performed to determine the material parameters. Also, the rupture type and microstructural precipitation were observed by scanning electron microscopy. The creep life of HR3C steel was predicted using only relatively short-term creep test data and was then successfully verified by comparison with the long-term creep data.


2018 ◽  
Vol 25 (3) ◽  
pp. 713-722 ◽  
Author(s):  
Seen Chan Kim ◽  
Jae-Hyeok Shim ◽  
Woo-Sang Jung ◽  
Yoon Suk Choi

2005 ◽  
Vol 482 ◽  
pp. 275-278 ◽  
Author(s):  
Vlastimil Vodárek ◽  
Gabriela Rožnovská ◽  
Jaromír Sobotka

The long-term creep rupture tests have been carried out on three casts of a type AISI 316LN steel at 600 and 650°C. Two of the casts investigated contained additions of 0.1 and 0.3 wt.% of niobium. The growing niobium content strongly reduced the minimum creep rate and prolonged the time to the onset of the tertiary stage of creep and also shortened this stage. The enhanced creep resistance of niobium containing steels is not accompanied by the longer creep life that might have been expected. At both temperatures of creep exposure the niobium-bearing casts displayed an inferior creep ductility. Microstructural investigations revealed that niobium provoked significant grain size refinement and the formation of Z-phase. Particles of this phase were considerably dimensionally stable. Furthermore, niobium accelerated the formation and coarsening of s-phase, h-Laves and M6(C,N). The coarse intergranular particles facilitated the formation of cavities which resulted in intergranular failure mode.


2010 ◽  
Vol 87 (6) ◽  
pp. 276-281 ◽  
Author(s):  
K. Maruyama ◽  
H. Ghassemi Armaki ◽  
R.P. Chen ◽  
K. Yoshimi ◽  
M. Yoshizawa ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2534 ◽  
Author(s):  
Vito Cedro III ◽  
Christian Garcia ◽  
Mark Render

Advanced power plant alloys must endure high temperatures and pressures for durations at which creep data are often not available, necessitating the extrapolation of creep life. A recently developed creep life extrapolation method is the Wilshire equations, with which multiple approaches can be used to increase the goodness of fit of available experimental data and improve the confidence level of calculating long-term creep strength at times well beyond the available experimental data. In this article, the Wilshire equation is used to extrapolate the creep life of Inconel 617 and Nimonic 105 to 100,000 h. The use of (a) different methods to determine creep activation energy, (b) region splitting, (c) heat- and processing-specific tensile strength data, and (d) short-duration test data were investigated to determine their effects on correlation and extrapolation. For Inconel 617, using the activation energy of lattice self-diffusion as Q C * resulted in a poor fit with the experimental data. Additionally, the error of calculated rupture times worsened when splitting regions. For Nimonic 105, the error was reduced when heat- and processing-specific tensile strengths were used. Extrapolating Inconel 617 creep strength to 100,000 h life gave conservative results when compared to values calculated by the European Creep Collaborative Committee.


2020 ◽  
Vol 179 ◽  
pp. 104014 ◽  
Author(s):  
Tuo Liang ◽  
Xinbao Liu ◽  
Ping Fan ◽  
Lin Zhu ◽  
Yao Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document