Modified Dyson Continuum Damage Model for Austenitic Steel Alloy

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Seok Jun Kang ◽  
Hoomin Lee ◽  
Jae Boong Choi ◽  
Moon Ki Kim

Ultrasuper critical (USC) thermal plants are now in operation around the globe. Their applications include superheaters and reheaters, which generally require high temperature/pressure conditions. To withstand these harsh conditions, an austenitic heat-resistant HR3C (ASME TP310NbN) steel was developed for metal creep resistance. As the designed life time of a typical thermal plant is 150,000 h, it is very important to predict long-term creep behavior. In this study, a three-state variable continuum damage model (CDM) was modified for better estimation of long-term creep life. Accelerated uniaxial creep tests were performed to determine the material parameters. Also, the rupture type and microstructural precipitation were observed by scanning electron microscopy. The creep life of HR3C steel was predicted using only relatively short-term creep test data and was then successfully verified by comparison with the long-term creep data.

Author(s):  
Kenji Kako ◽  
Susumu Yamada ◽  
Masatsugu Yaguchi ◽  
Yusuke Minami

Type IV damage has been found at several ultra-supercritical (USC) plants that used high-chromium martensitic steels in Japan, and the assessment of the remaining life of the steels is important for electric power companies. The assessment of the remaining life needs long-term creep data for over 10 years, but such data are limited. We have attempted to assess the remaining life by creep tests and by microstructural observation of Grade 91 steels welded pipes which were used in USC plants for over 10 years. Following the results of microstructural observation of USC plant pipes, we find that microstructures, especially distribution of MX precipitates, have large effect on the creep life of Grade 91 steels.


The effect of a superimposed hydrostatic pressure on the ductility, the creep life and the failure mechanism of a 2 ¼ % Cr 1 % Mo steel, with an over-aged upper bainite microstructure, subject to different uniaxial stresses is described. Creep tests have been made at 923 K with uniaxial stresses in the range 55-80 MPa and superimposed hydrostatic pressures up to 35MPa. Optical and electron optical microscopy have been used to assess the accumulation of grain boundary damage arising from creep deformation. When failure is controlled by intergranular cavitation, increasing the hydrostatic pressure causes an increase in the creep ductility and a decrease in cavitation, and thus an increase in time to failure. In addition, increasing pressure effects a change in failure mode from one controlled by the nucleation and growth of intergranular cavities to one controlled by plastic flow. The results for the creep of this 2¼ % Cr 1 % Mo steel are discussed in terms of a diffusional cavity growth model which includes continuous nucleation. Moreover, these results are compared with data previously obtained for single phase materials tested with a superimposed hydrostatic pressure. The relative contributions of the principal and equivalent stresses to the creep fracture of this low alloy steel are also examined. The estimation of realistic long-term creep life from the results of short-term creep tests is also discussed.


2017 ◽  
Vol 62 (4) ◽  
pp. 2057-2064 ◽  
Author(s):  
A. Zieliński ◽  
J. Dobrzański ◽  
H. Purzyńska ◽  
R. Sikora ◽  
M. Dziuba-Kałuża ◽  
...  

AbstractThis article presents the results of investigations on HR6W alloy and Sanicro 25 steel and the dissimilar welded joint made of them. The characteristic images of microstructure of the investigated materials in the as-received condition and following the creep test, observed with a scanning electron microscope (SEM), are shown. The X-ray analysis of phase composition of the existing precipitates was carried out. The method for evaluation of creep strength based on abridged creep tests carried out at a temperature higher than the design one is presented. The obtained results do not deviate from the values of creep strength determined in long-term creep tests. The maximum difference in creep strength of the investigated materials is ±20%, which is in compliance with the acceptable scatter band. The methodology presented can be used for verification of creep strength (life time) of the material of finished components to be operated under creep conditions.


Author(s):  
Hoomin Lee ◽  
Seok-Jun Kang ◽  
Jae-Boong Choi ◽  
Moon-Ki Kim

The world’s energy market demands more efficient power plants, hence, the operating conditions become severe. For thermal plants, Ultra Super Critical (USC) conditions were employed with an operating temperature above 600°C. In such conditions, the main failure mechanism is creep rupture behavior. Thus, the accurate creep life prediction of high temperature components in operation has a great importance in structural integrity evaluation of USC power plants. Many creep damage models have been developed based on continuum damage mechanics and implemented through finite element analysis. The material constants in these damage models are derived from several accelerated uniaxial creep experiments in high stress conditions. In this study, the target material, HR3C, is an austenitic heat resistant steel which is used in reheater/superheater tubes of an USC power plant built in South Korea. Its creep life was predicted by extrapolating the creep rupture times derived from three different creep damage models. Several accelerated uniaxial creep tests have been conducted in various stress conditions in order to obtain the material constants. Kachanov-Rabotnov, Liu-Murakami and the Wen creep damage models were implemented. A comparative assessment on these three creep damage models were performed for predicting the creep life of HR3C steel. Each models require a single variable to fit the creep test curves. An optimization error function were suggested by the authors to quantify the best fit value. To predict the long term creep life of metallic materials, the Monkman-Grant model and creep rupture property diagrams were plotted and then extrapolated over an extended range. Finally, it is expected that one can assess the remaining lifetime of UCS power plants with such a valid estimation of long-term creep life.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Fujio Abe

Abstract The influence of oxidation on the estimation of long-term creep rupture strength is investigated for 2.25% chromium (Cr)–1% molybdenum (Mo) steel specified as JIS STBA 24, JIS SCMV 4 NT, and ASTM A542/A542M by the Larson–Miller method using creep rupture data in the National Institute for Materials Science (NIMS) Creep Data Sheets at 450–650 °C for up to 313,000 h. The creep rupture data exhibit a change in slope of the stress versus time to rupture curves due to oxidation in air during 600 °C creep tests at 15,000–40,000 h and 650 °C tests at 2000–3500 h for different size specimens, which indicates degradation in creep life by the oxidation. The estimated 100,000 h creep rupture strength using regression analysis is increased by the elimination of long-term data degraded by the oxidation. Several metallurgical factors, such as the initial strength represented by the 0.2% proof stress at the creep test temperature and the concentration of aluminum (Al) impurity, also affect the creep life of the tested steel.


Author(s):  
Seok-Jun Kang ◽  
Hoomin Lee ◽  
Moon-Ki Kim ◽  
Jae-Boong Choi

Recently, due to both environmental and energy efficiency, the designed life cycle of many power plant have been extended and also their operating temperature increased. When a material is exposed to high temperature over 50% of its melting temperature, it often shows unusual creep behavior in which the long time exposure of high temperature causes a microstructural degradation in the material and leads to creep rupture at a stress much lower than yield. Thus, there is a great significance in evaluating the creep life of high temperature components in power plant. In this study, accelerated uniaxial creep tests have been conducted to obtain material properties of HR3C at high temperature. The material properties of three damage models were derived from the accelerated short term creep tests in different stress conditions and the constitutive equation was the form of a power-law for the Kachanov and Liu-Murakami damage models and a hyperbolic sine function for the Dyson model, respectively. Based on these three damage models, the long term creep life was also evaluated. Using the creep rupture envelope, a modified grain boundary constrained cavitation coefficient function is proposed to resolve the constant failure strain problem. Also another modifications is made to the aging coefficient calculation by suggesting a new type of optimization function. By this, the classical problem of rupture time underestimation in the original Dyson model has been resolved. Consequently, the suggested creep life evaluation technique with a simple uniaxial creep example can be extended to more complicated engineering components at high temperature.


2019 ◽  
Vol 795 ◽  
pp. 130-136
Author(s):  
Xinyu Yang ◽  
Richard Barrett ◽  
Sean B. Leen ◽  
Jian Ming Gong

This paper is concerned with the creep life prediction of cast 20Cr32NiNb alloy, an alternative candidate material to wrought Inconel alloys for use in the gas collector pipes of CO reformers which suffer from long-term creep damage due to high temperatures and stresses. Uniaxial creep tests of 20Cr32NiNb alloy were performed at 890 °C and 950 °C for different stresses. The Omega method for creep life prediction is applied to the 20Cr32NiNb tests and shown to give reasonably accurate prediction, particularly at low stress levels. A new method, based on the use of a hyperbolic sine function for stress correlation at specific temperatures for identification of the characteristic Omega parameters is presented and validated.


Author(s):  
Toshimi Kobayashi ◽  
Toru Izaki ◽  
Junichi Kusumoto ◽  
Akihiro Kanaya

The small punch creep (SPC) test is possible to predict residual creep life at a high accuracy. But, the results of SPC tests cannot be compared with uniaxial creep or internal pressure creep results directly. In this report, the relationship between SPC test results and uniaxial creep test results in ASME A335 P11 (1.25Cr-0.5Mo Steel) was studied. The obtained relationship between SPC load and equivalent uniaxial creep stress formed a simple linear equation under the wide range of test temperature and test period. Then, the SPC results can be compared with uniaxial results by converting SPC loads to the equivalent uniaxial creep stresses. The relationship between SPC test results and internal pressure creep tests results was also studied. The internal creep life of as-received P11 pipe was almost same as SPC result when the hoop stress was converted to the SPC load. The creep lives of internal pressure creep influenced materials also showed good correspondence with SPC results. Therefore SPC can estimate the residual life of internal pressure creep influenced materials.


Sign in / Sign up

Export Citation Format

Share Document