Asymmetric supercapacitor featuring carbon nanotubes and nickel hydroxide grown on carbon fabric: A study of self-discharging characteristics

2020 ◽  
Vol 828 ◽  
pp. 154447 ◽  
Author(s):  
Manoj Mayaji Ovhal ◽  
Neetesh Kumar ◽  
Soon-Kyu Hong ◽  
Hyung-Woo Lee ◽  
Jae-Wook Kang
Author(s):  
Justin W. Wilkerson ◽  
Jiang Zhu ◽  
Daniel C. Davis

A multi-scale carbon fiber reinforced polymer nanocomposite laminate, with strategically incorporated fluorine functionalized carbon nanotubes at 0.2 weight percent, is studied for improvements in strength, stiffness and fatigue life under both tension-tension fatigue (R = +0.1) and tension-compression fatigue (R = −0.1) loading. The nanotubes were incorporated into the carbon fabric, and laminates were fabricated using a high temperature vacuum assisted resin transfer molding process. The influence of the fluorinated functionalized carbon nanotubes on the evolution of damage and the resistance to catastrophic failure is credited for these mechanical property improvements.


2021 ◽  
pp. 163231
Author(s):  
Chia-En Hsieh ◽  
Ching Chang ◽  
Shivam Gupta ◽  
Chung-Hsuan Hsiao ◽  
Chi-Young Lee ◽  
...  

2019 ◽  
Vol 53 (24) ◽  
pp. 3413-3431 ◽  
Author(s):  
Kadir Bilisik ◽  
Nesrin Karaduman ◽  
Gulhan Erdogan ◽  
Erdal Sapanci ◽  
Sila Gungor

The in-plane shear properties of nanostitched three-dimensional (3D) carbon/epoxy composites were investigated. Adding the stitching fiber or multiwalled carbon nanotubes or nanostitched fiber into carbon fabric preform slightly improved the shear strength and modulus of stitched and stitched nanocomposites. The in-plane shear fracture of the base and nanostructures was extensive delamination and tensile fiber failures in the sheared region. But, the stitched and stitched nanocomposites had angular deformation of the stitching yarns in the fiber scissoring areas, shear hackles in the matrix and successive fiber breakages in the interlayers. Probably, this mechanism prohibited extensive interlayer opening in the nanostitched composites. The results exhibited that introducing the stitching fiber (1.44%) and multiwalled carbon nanotubes (0.03125%) in the base structure enhanced its transverse fracture properties as a form of confined delamination area. Therefore, the damaged tolerance properties of the stitched nanocomposites were enhanced.


Sign in / Sign up

Export Citation Format

Share Document