In-plane shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwalled carbon nanotubes composites

2019 ◽  
Vol 53 (24) ◽  
pp. 3413-3431 ◽  
Author(s):  
Kadir Bilisik ◽  
Nesrin Karaduman ◽  
Gulhan Erdogan ◽  
Erdal Sapanci ◽  
Sila Gungor

The in-plane shear properties of nanostitched three-dimensional (3D) carbon/epoxy composites were investigated. Adding the stitching fiber or multiwalled carbon nanotubes or nanostitched fiber into carbon fabric preform slightly improved the shear strength and modulus of stitched and stitched nanocomposites. The in-plane shear fracture of the base and nanostructures was extensive delamination and tensile fiber failures in the sheared region. But, the stitched and stitched nanocomposites had angular deformation of the stitching yarns in the fiber scissoring areas, shear hackles in the matrix and successive fiber breakages in the interlayers. Probably, this mechanism prohibited extensive interlayer opening in the nanostitched composites. The results exhibited that introducing the stitching fiber (1.44%) and multiwalled carbon nanotubes (0.03125%) in the base structure enhanced its transverse fracture properties as a form of confined delamination area. Therefore, the damaged tolerance properties of the stitched nanocomposites were enhanced.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 763 ◽  
Author(s):  
Xiaogang Luo ◽  
Zengcheng Yu ◽  
Yixin Cai ◽  
Qiangxian Wu ◽  
Jian Zeng

It is challenging to prepare polyurethane bioplastics from renewable resources in a sustainable world. In this work, polyurethane nanocomposite bioplastics are fabricated by blending up to 80 wt % of soy-based polyol and petrochemical polyol with hydroxyl-functionalized multiwalled carbon nanotubes (MWCNTs-OH). The scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR) analyses reveal homogeneous dispersion of the MWCNTs-OH in the matrix, as well as interaction or reaction of MWCNTs-OH with the matrix or polymeric methylene diphenyl diisocyanate (pMDI) in forming the organic–inorganic hybrid bioplastic with a three-dimensional (3D) macromolecule network structure. Mechanical properties and electrical conductivity are remarkably enhanced with the increase of the multiwalled carbon nanotube (MWCNTs) loading. Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) results show that the bioplastics with MWCNTs-OH have a better thermal stability compared with the bioplastics without MWCNTs-OH. The composition of the nanocomposites, which defines the characteristics of the material and its thermal and electrical conductivity properties, can be precisely controlled by simply varying the concentration of MWCNTs-OH in the polyol mixture solution.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1596 ◽  
Author(s):  
Artemiy Aborkin ◽  
Kirill Khorkov ◽  
Evgeny Prusov ◽  
Anatoly Ob’edkov ◽  
Kirill Kremlev ◽  
...  

Aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs) are promising materials for applications in various high-tech industries. Control over the processes of interfacial interaction in Al/MWCNT composites is important to achieve a high level of mechanical properties. The present study describes the effects of coating MWCNTs with titanium carbide nanoparticles on the formation of mechanical properties and the evolution of the reinforcement structure in bulk aluminum matrix nanocomposites with low concentrations of MWCNTs under conditions of solid-phase consolidation of ball-milled powder mixtures. Using high-energy ball milling and uniaxial hot pressing, two types of bulk nanocomposites based on aluminum alloy AA5049 that were reinforced with microadditions of MWCNTs and MWCNTs coated with TiC nanoparticles were successfully produced. The microstructural and mechanical properties of the Al/MWCNT composites were investigated. The results showed that, on the one hand, the TiC nanoparticles on the surface of the MWCNT hybrid reinforcement reduced the damage of reinforcement under the intense exposure of milling bodies, and on the other hand, they reduced the contact area of the MWCNTs with the matrix material (acting as a barrier interface), which also locally inhibited the reaction between the matrix and the MWCNTs.


2016 ◽  
Vol 51 (2) ◽  
pp. 199-208 ◽  
Author(s):  
B Ribeiro ◽  
RB Pipes ◽  
ML Costa ◽  
EC Botelho

Polyphenylene sulfide-based nanocomposites filled with unmodified multiwalled carbon nanotubes from 0.5 wt% to 8.0 wt% have been prepared by melt mixing technique with a single-screw extruder and hot press. Transmission electronic microscopy and scanning electron microscopy analysis were carried out in order to assess the multiwalled carbon nanotubes dispersion throughout the polyphenylene sulfide matrix. Electrical conductivity of the polymer was dramatically enhanced by about 11 decades between 2.0 wt% and 3.0 wt% of nanotubes, suggesting the formation of three-dimensional conductive network within the polymeric matrix. The storage modulus (G′) of neat polyphenylene sulfide presented an increase by two orders of magnitude when 2.0 wt% of pristine multiwalled carbon nanotubes was considered, with the formation of an interconnected nanotube structure, indicative of “pseudo-solid-like” behavior. In addition, percolation networks were formed when the loading levels achieve up to 1.5 wt% for multiwalled carbon nanotubes/polyphenylene sulfide composites.


2016 ◽  
Vol 848 ◽  
pp. 125-131
Author(s):  
Yin He Su ◽  
Jun Rong Yu

Multiwalled carbon nanotubes (MWCNT)-reinforced polymerized cyclic butylene terephthalate (pCBT) nanocomposites were prepared by in situ ring opening polymerization of cyclic butylene terephthalate oligomers (CBT). The results of differential scanning calorimetry (DSC) indicated that the melting peak located at the low temperature (Tm1) increased and that at higher temperature (Tm2) decreased with the increasing of content of the MWCNT. During the cooling the MWCNT served as nucleation points from where crystallization can start. The more the MWCNT in the system the earlier the crystallization starts. The Morphological investigations performed by scanning electron microscopy (SEM) shown that the MWCNT were embedded in the matrix and held tightly by the matrix. The modulus and strength increased with MWCNT concentration in the nanocomposites, however, the elongation at break, absorbed energy at break and impact strength were decreased with the increasing of MWCNT content.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55071-55078 ◽  
Author(s):  
Zhichun Yang ◽  
Waqar Ahmad ◽  
Liang Chu ◽  
Majid Raissan Al-bahrani ◽  
Fanfan Tu ◽  
...  

A novel strategy of fast solvent induced assembly is used to synthesize a three-dimensional (3D) nanocomposite of multiwalled carbon nanotubes (MWCNTs) and TiO2, as the counter electrode (CE) of dye-sensitized solar cells (DSSCs).


2021 ◽  
Vol 22 ◽  
pp. 100569
Author(s):  
Hao-Lin Hsu ◽  
Milon Miah ◽  
Shyamal Kumar Saha ◽  
Jean-Hong Chen ◽  
Lung-Chuan Chen ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 2279-2283
Author(s):  
R. Ramesh Kannan ◽  
M. Sivabharathy

Manganese decorated Multiwalled carbon nanotubes were synthesized through a simple solvo thermal method. The surface morphology and structural analyses of the MnO2 doped MCNT have performed by Transmission electron microscope (TEM), Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Morphological characterization reveals that three-dimensional hierarchy architecture built with a highly porous layer consisting of interconnected MnO2 uniformly coated on the CNT surface. The XRD and EDS results confirmed that the prepared samples containing MnO2/CNT in pure form without impurities. It also reveals that birnessite-type MnO2 is formed through the solvo thermal synthesis. The Optical properties of the prepared samples were examined by UV-visible spectrometer and Fourier transform spectroscopy. The UV-vis spectra of the nanoparticles indicate a decrease in the band gap from 1.037 to 0.999 eV. The results reveal the band gap shrinkage associated with Mn concentration more at high temperature phase and crystalline behavior. The composition of the prepared samples were characterized using Energy dispersive spectroscopy (EDS).


Sign in / Sign up

Export Citation Format

Share Document