Prussian blue analogue derived Pd-Co composite bifunctional electrocatalyst for Zn–air battery

2020 ◽  
Vol 832 ◽  
pp. 154896 ◽  
Author(s):  
Xianyi Liu ◽  
Juan Han ◽  
Jie Deng ◽  
Sarah Imhanria ◽  
Zongli Ren ◽  
...  
Author(s):  
Xiaoyang Dong ◽  
Jinxing Wang ◽  
Xiao Wang ◽  
Jingdong Yang ◽  
Ling Zhu ◽  
...  

Abstract Developing efficient, durable, and cost-effective non-noble metal catalysts for oxygen reduction reaction (ORR) is necessary to promote the efficiency and performance of Mg-air batteries. Herein, the Co3O4/CuO nanoparticles were synthesized by a low-cost and simple approach using CuCo-based prussian blue analogue (PBA) as precursor of pyrolysis at different calcination temperatures. It was found that the Co3O4/CuO nanoparticles calcined at 600ºC (CCO-600) have relatively small size and superior ORR performance. The onset potential is 0.889 V and the diffusion limiting current density achieves 6.746 mA·cm-2, as well as prominent stability in 0.1 M KOH electrolyte. The electron transfer number of the CCO-600 is 3.89 under alkaline medium, which indicates that the reaction mechanism of ORR is dominated by 4 e process, similar to commercial Pt. The primary Mg-air battery with the CCO-600 as the cathode catalyst has been assembled and possesses better discharge performance than the CuCo-based PBA. The open circuit voltage of CCO-600 arrives at 1.76 V and energy density of 1895.95 mWh/g. This work provides an effective strategy to develop non-noble metal ORR catalyst for the application of metal-air batteries


2021 ◽  
Vol 7 (7) ◽  
pp. 99
Author(s):  
Linh Trinh ◽  
Eric Rivière ◽  
Sandra Mazerat ◽  
Laure Catala ◽  
Talal Mallah

The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matrices with different concentrations. The effect of the intensity of light irradiation was studied in the less concentrated sample. Magnetization studies and alternating magnetic susceptibility data are consistent with a collective magnetic behavior due to interparticle dipolar magnetic interaction for the two compounds, even though the objects have a size that place them in the superparamagnetic regime.


Sign in / Sign up

Export Citation Format

Share Document