Multifractal characteristics of the self-assembly material texture of β-Si3N4/SUS316L austenitic stainless steel composites

2021 ◽  
Vol 853 ◽  
pp. 156570
Author(s):  
Fumio Munakata ◽  
Mariko Takeda ◽  
Kazuhiro Nemoto ◽  
Kazuya Ookubo ◽  
Yoshihiro Sato ◽  
...  
2021 ◽  
pp. 002199832110573
Author(s):  
Fumio Munakata ◽  
Kazuya Ookubo ◽  
Mariko Takeda ◽  
Yoshihiro Sato ◽  
Yuka Mizukami ◽  
...  

In the self-assembly process of β-Si3N4 (SN)/316L stainless-steel (SUS316L) composite materials tailored via sintering of powder mixtures, the formation of a SN agglomerate resulting from condensation–dispersion reactions during the stirring of SN/SUS316L was found to play an important role in improving the thermal conductivity. Moreover, the obtained SN secondary particle groups connected to form a network through diffusion-limited aggregation. In particular, it was shown that the sample prepared at the milling speed of 150 r/min has a similar particle group area (about 1.38 μm2) to that at 120 r/min, but a higher κ (increased from 9.5 W m−1 K−1 to 11.5 W m−1 K−1). To quantitatively evaluate the microstructural morphology of the texture of the self-assembled composite material, global parameters τ( q) and D q and local parameters α( q) and f( α) were determined via multifractal analysis. These characteristics of the anisotropy, dispersion, and cohesiveness of the particle network in the material texture could be analyzed together with the capacity dimension D0, information dimension D1 (configuration entropy), correlation dimension D2, and α( q) (related to internal energy). The results suggest that α( q) reflects the differences in the cohesion of the additive particle agglomeration that constitutes the self-assembly process under the solid-state reaction.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
R. Gonzalez ◽  
L. Bru

The analysis of stacking fault tetrahedra (SFT) in fatigued metals (1,2) is somewhat complicated, due partly to their relatively low density, but principally to the presence of a very high density of dislocations which hides them. In order to overcome this second difficulty, we have used in this work an austenitic stainless steel that deforms in a planar mode and, as expected, examination of the substructure revealed planar arrays of dislocation dipoles rather than the cellular structures which appear both in single and polycrystals of cyclically deformed copper and silver. This more uniform distribution of dislocations allows a better identification of the SFT.The samples were fatigue deformed at the constant total strain amplitude Δε = 0.025 for 5 cycles at three temperatures: 85, 293 and 773 K. One of the samples was tensile strained with a total deformation of 3.5%.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Sign in / Sign up

Export Citation Format

Share Document