density of dislocations
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
D. M. Berdiev ◽  
M. A. Uмаrоvа ◽  
A. A. Yusupov

The relationships between the parameters of the structure of heat‑treated steels and their abrasive wear resistance are established. At all temperatures of the final tempering of hardened steel, there is a direct relationship between its structure parameters (the number of elements in a solid solution, the density of dislocations, the size of cementite particles and the intercementite distance) and wear resistance when sliding friction against loose abrasive particles. A computer program has been developed to select the chemical composition of the steel grade and methods of thermal hardening in order to ensure the required wear resistance.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1852
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng ◽  
Junfeng Xiang

The tensile properties and superplasticity of a forged SP700 alloy with slow eutectoid element (1.5%Cr) addition were investigated in the present paper. The results of the microstructures showed that slow eutectoid element Cr has a significant influence on stabilizing the β phase and the SP700Cr alloy showed a uniform duplex and completely globular microstructure after annealing at 820 °C for 1 h and aging at 500 °C for 6 h. The results of the tensile tests showed that the yield strength, ultimate tensile strength and elongation of the alloy with optimized microstructure were 1312 MPa, 1211 MPa and 10% at room temperature, and the elongation was achieved to 1127% at 770 °C. Compared with that of the SP700 alloy, the strain rate sensitivity of the SP700Cr alloy showed a higher value. The microstructures after elevated temperature tensile tests showed that the higher density of dislocations and twins exists in SP700 alloy and the lower density of dislocations favor distribution in SP700Cr alloy. Based on the above results, the tensile properties and superplasticity of the forged SP700 alloy with 1.5% Cr addition was analyzed. In addition, microstructure characteristics were investigated by the TEM and EBSD technologies.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1735
Author(s):  
Xuanliang Chen ◽  
Eva Anne Mørtsell ◽  
Jonas Kristoffer Sunde ◽  
Minho O ◽  
Calin Daniel Marioara ◽  
...  

Aging heat treatment is the most commonly used strengthening method for Al–Mg–Si alloys since high-density precipitates will be formed to hinder the movement of dislocations. In the current work, room temperature cyclic deformation was attempted to strengthen the alloy. We compared tensile test results of aged samples and cyclically deformed samples. It was found that cyclically deformed samples can achieve similar strength and approximately twice the uniform elongation as the peak aged samples. The high density of dislocations and nanoclusters observed in the cyclically deformed samples is thought to be the main reason for strengthening. Different cyclic deformation conditions have been tried and their effects were discussed.


Author(s):  
L. I. Hurski

The deformed and stressed states during rolling of a three-layer stack from various materials with a nickel foil inner layer are considered. The technique of determining the density of dislocations is described. The data about the influence of deformation conditions on the distribution and density of dislocations during rolling of nickel foil in various stacks are presented, including the registration or determination of the dislocation structure of nickel foil before deformation and at various degrees of deformation. It is shown that the mechanical scheme of deformation of the inner layer of the stack, namely, the deformation of the nickel foil by non-uniform compression with shear, has a decisive influence on the development of the dislocation structure and properties. It is established that the dislocation density is determined not only by the degree of deformation, but also by a scheme of the deformed and stressed state of matter, and for the case of shear deformation with increasing degree of deformation the dislocation density increases more rapidly than in the case of tensile strain or compression without shear; the result of shear deformation is a significant refinement of the structure of materials: with increasing degree of plastic deformation of the material a three-dimensional cellular network of dislocation is formed, wherein the borders of cells are formed by tangles of dislocations. With increasing degree of deformation, the density of dislocations at the cell boundaries increases, and the size of the cells decreases; in this case, the areas inside the cells of the dislocation network are always free of dislocations. The obtained results allow recommending the schemes with shear deformation for new promising processes of production of materials with unique properties.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1120
Author(s):  
Ji-Hoon Park ◽  
Kee-Ahn Lee ◽  
Sung-Jae Won ◽  
Yong-Bum Kwon ◽  
Kyou-Hyun Kim

In this study, we investigate the influence of Sc microalloying on the microstructure of the Al5083 alloy. Trace amounts of Sc addition drastically improve the mechanical properties of the Al5083 alloy from 216 MPa to 233 MPa. Macroscopically, the addition of Sc significantly reduces the grain size of Al by approximately 50%. Additionally, a microstructural investigation reveals that the Sc microalloying element induces fine Al3Sc nanoprecipitates in the Al matrix. The formation of Al3Sc nanoprecipitates results in a pinning effect on the dislocations, leading to accumulated dislocations. Compared to a Sc-free Al5083 alloy specimen, the number density of dislocations in the Sc-added Al5083 alloy significantly increases after hot rolling, enhancing the tensile properties. We reveal that the improved mechanical properties of Al5083 with Sc microalloying originate from the grain refinement and the formation of fine Al3Sc nanoprecipitates.


Author(s):  
D. M. Berdiev ◽  
A. A. Yusupov

The use of non-standard modes of heat treatment increases the density of dislocations in the crystal structure of the α-phase and increases the wear resistance of carbon, low-alloy steels under various friction conditions, which is comparable to the results when heated to a standard temperature (Ac3 + 30–50 °C). The preliminary extreme heating temperature is determined. After requenching at standard temperature and low tempering, the wear resistance of steels under various types of friction increases by up to 40 % compared to standard quenching.


2021 ◽  
pp. 61-63
Author(s):  

The wear resistance of low-alloy carbon steels after non-standard heat treatment, which increases the density of dislocations in the crystal structure of the a-phase, under different friction conditions is investigated. Keywords: wear resistance, heat treatment, hardness, carbon and low-alloy steels, dislocation density. [email protected]


2021 ◽  
pp. 184-191
Author(s):  
V.V. Ovchinnikov ◽  
M.Yu. Slezko ◽  
D.A. Magay ◽  
A.G. Sbitnev

The article considers the effect of ultrasonic exposure after the ion implantation of titanium alloys VT1-0 and VT6 silver on the thickness of the ion-leged layer, the distribution of silver by the thickness of this layer and the scalar density of dislocations in the subsurface layer. It has been established that for the alloy VT6 at the same parameters of the implantation regime there is a deeper penetration of silver ions compared to the alloy VT1-0. Directly under the ion-leged layer is formed a layer with an increased rocky density of dislocations. The ultrasonic treatment of the implanted layer on the alloys studied contributed to the deeper penetration of silver ions and the alignment of its concentration by the thickness of the surface layer of titanium alloys.


Sign in / Sign up

Export Citation Format

Share Document