Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification

2021 ◽  
pp. 160651
Author(s):  
Jie Cai ◽  
Yiming Yao ◽  
Chengzuan Gao ◽  
Peng Lyu ◽  
Xiankai Meng ◽  
...  
2016 ◽  
Vol 41 ◽  
pp. 87-95 ◽  
Author(s):  
Jian Jun Hu ◽  
Lin Jiang Chai ◽  
Hong Bin Xu ◽  
Chao Ping Ma ◽  
Shu Bin Deng

Cr layer was fabricated on 40Cr steel by electric brush plating process and then treated by high current pulsed electron beam irradiation technique. Surface microstructures of specimens before and after the irradiation were investigated. Results show that Cr surface is composed of uniformly distributed small nodule units which are composed of fine Cr particles smaller than 100nm. After high current pulsed electron beam treatment, many cracks are found on surface. The main reason is possibly due to the quasi-static thermal stresses accumulated along the surface of the specimens during the electron beam treatment. The surface grain grow from Cr particles because of heating by electron beam, and their size is less than 200nm.


2019 ◽  
Vol 8 (5) ◽  
pp. 726-734 ◽  
Author(s):  
Zhi-Yong Han ◽  
Wen-Xin Shi ◽  
Zhe Wang ◽  
Kun-Ying Ding ◽  
Tao-tao Cheng ◽  
...  

2018 ◽  
Vol 5 (12) ◽  
pp. 126515
Author(s):  
Jie Cai ◽  
Guojun Li ◽  
Chen Li ◽  
Conglin Zhang ◽  
Peng Lv ◽  
...  

2019 ◽  
Vol 38 (2019) ◽  
pp. 444-451 ◽  
Author(s):  
Lingyan Zhang ◽  
Yunxue Jin ◽  
Xitong Wang ◽  
Jie Cai ◽  
Qingfeng Guan

AbstractThe chromium was deposited on the surface of 0.45 C medium carbon steel by high current pulsed electron beam (HCPEB) alloying treatment to obtain a high quality alloying layer. The microstructure of the alloying layer was studied by X-ray diffraction, optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy. The hardness of the surface was measured by Vickers durometer. The corrosion resistance of samples before and after HCPEB irradiation was also measured by an electrochemical workstation. The results showed that the alloying layer with a dept of about 4–9 μm on the surface was formed after HCPEB alloying treatment. TEM results revealed that the Cr element is dissolved on the surface and alloyed with C element in the substrate to form Cr23C6 enhanced particles. The microhardness and corrosion resistance of the medium carbon steel subjected to a HCPEB alloying processing were remarkably improved compared with the original one.


2016 ◽  
Author(s):  
Yuri Ivanov ◽  
Oleg Tolkachev ◽  
Maria Petyukevich ◽  
Anton Teresov ◽  
Olga Ivanova ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4372
Author(s):  
Sergey G. Anikeev ◽  
Anastasiia V. Shabalina ◽  
Sergei A. Kulinich ◽  
Nadezhda V. Artyukhova ◽  
Daria R. Korsakova ◽  
...  

A new approach to fabricate TiNi surfaces combining the advantages of both monolithic and porous materials for implants is used in this work. New materials were obtained by depositing a porous TiNi powder onto monolithic TiNi plates followed by sintering at 1200 °C. Then, further modification of the material surface with a high-current-pulsed electron beam (HCPEB) was carried out. Three materials obtained (one after sintering and two after subsequent beam treatment by 30 pulses with different pulse energy) were studied by XRD, SEM, EDX, surface profilometry, and by means of electrochemical measurements, including OCP and EIS. Structural and compositional changes caused by HCPEB treatment were investigated. Surface properties of the samples during their storage in saline for 10 days were studied and a model experiment with cell growth (MCF-7) was carried out for the unmodified sample with an electron beam to detect cell appearance on different surface locations.


Sign in / Sign up

Export Citation Format

Share Document