Electromagnetic shielding, resistance temperature-sensitive behavior, and decoupling of interfacial electricity for reduced graphene oxide paper

2021 ◽  
pp. 160756
Author(s):  
Xinghua Hong ◽  
Tao Peng ◽  
Chengyan Zhu ◽  
Junmin Wan ◽  
Yongqiang Li
2021 ◽  
pp. 152808372110342
Author(s):  
Xinghua Hong ◽  
Rufang Yu ◽  
Yubing Dong ◽  
Junmin Wan ◽  
Hongxia Zhang ◽  
...  

Electric fabric heaters have demonstrated potential applications in a wide range of fields for medical electrothermal, human healthcare and athletic rehabilitation. Whereas, little attention has been paid to the resistance variations and the interface of electric heaters. Here, this paper focuses on the resistance temperature-sensitive behavior and interfacial electricity of reduced graphene oxide (RGO)/polyester (PET) fabrics, which are obatained through a facile and scalable dip-coating method. When a current of 0.055 ampere (A) is applied, the RGO/PET fabric can achieve an equilibrium temperature about 89 °C in 20 s, with a maximum heating rate of 11.78 °C/s. Besides, the relative resistance changes of RGO/PET fabric are linearly related to the temperature. When the RGO/PET fabric reaches its steady-state temperature of 89 °C, the value of ΔR/R0 drops by ∼30%, showing that the fabric is endowed with temperature sensitivity. These prominent results indicate that the RGO/PET fabric owns great promise in the field of wearable electric heaters. Notably, the contact resistance at the interface of RGO/PET fabric heater is investigated and the mechanism of the temperature in middle part of heater is higher than that of both ends is analyzed. This provides a qualitative decoupling analysis method for the study and analysis of interfacial electricity and electrothermal distribution of carbon materials.


2018 ◽  
Vol 53 (11) ◽  
pp. 1541-1553
Author(s):  
İsmail Tiyek ◽  
Mustafa Yazıcı ◽  
Mehmet Hakkı Alma ◽  
Şükrü Karataş

In this study, the production of an electromagnetic shielding material by doping reduced graphene oxide was aimed. Graphene oxide was produced from graphite through modified Hummer's method, and reduced graphene oxide was obtained by reducing graphene oxide. The reduced graphene oxide- doped poly(acrylonitrile-co-vinyl acetate) nanofiber mats were spun on the Polypropylene spunbond fabrics by a multi-needle electrospinning device at different lap numbers. Multi-layered surface samples of spunbond/nanofiber mats were obtained via calendaring process after overlapping in different layer numbers. The electromagnetic shielding effectiveness (EMSE) of these samples was measured in the range of 0.03–1.5 GHz according to ASTM D4935 standard. The effects of the numbers of laps and layers on the electromagnetic shielding effectiveness of the mats were also investigated. It was found that electromagnetic shielding effectiveness is greatly affected by changing the numbers of laps and layers. Consequently, the highest electromagnetic shielding effectiveness value of 35.49 dB was obtained from the sample containing two layers of nanofiber mats, each of which consisted 50 laps of nanofibers.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3162 ◽  
Author(s):  
Wei Liu ◽  
Xiaoyuan Zhang ◽  
Gang Wei ◽  
Zhiqiang Su

We demonstrate the fabrication of novel reduced graphene oxide (rGO)-based double network (DN) hydrogels through the polymerization of poly(N-isopropylacrylamide) (PNIPAm) and carboxymethyl chitosan (CMC). The facile synthesis of DN hydrogels includes the reduction of graphene oxide (GO) by CMC, and the subsequent polymerization of PNIPAm. The presence of rGO in the fabricated PNIPAm/CMC/rGO DN hydrogels enhances the compressibility and flexibility of hydrogels with respect to pure PNIPAm hydrogels, and they exhibit favorable thermoresponsivity, compressibility, and conductivity. The created hydrogels can be continuously cyclically compressed and have excellent bending properties. Furthermore, it was found that the hydrogels are pressure- and temperature-sensitive, and can be applied to the design of both pressure and temperature sensors to detect mechanical deformation and to measure temperature. Our preliminary results suggest that these rGO-based DN hydrogels exhibit a high potential for the fabrication of soft robotics and artificially intelligent skin-like devices.


2021 ◽  
pp. 100954
Author(s):  
Yu Zhang ◽  
Xuetao Shi ◽  
Guangcheng Zhang ◽  
Qiang Gao ◽  
Fei Huang ◽  
...  

2018 ◽  
Vol 712 ◽  
pp. 71-77
Author(s):  
Zhan-Hong Li ◽  
Xue-Ling Zhao ◽  
Run-Min Song ◽  
Cheng Chen ◽  
Peng-Ju Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document