Highly Flexible and Transparent Film Heater with Electrospun Copper Conductive Network via Junction-free Structure

2021 ◽  
pp. 161191
Author(s):  
Hyeonsu Woo ◽  
Suhyeon Kim ◽  
Seungbin Yoon ◽  
Kanghyun Kim ◽  
Geon Hwee Kim ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guolong Sang ◽  
Pei Xu ◽  
Tong Yan ◽  
Vignesh Murugadoss ◽  
Nithesh Naik ◽  
...  

Abstract Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm−3), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.


2020 ◽  
pp. 174425912098003
Author(s):  
Makiko Nakajima ◽  
Daisuke Masueda ◽  
Shuichi Hokoi ◽  
Takayuki Matsushita

The discoloration of building facades due to airborne algae is observed in our surroundings. The growth conditions of these algae are not yet fully understood, and efficient measures for preventing the growth of the algae are not presently available. The objective of this study was to investigate the effects of the ambient environment and building structure on algal growth. A residential building in a cold region of Japan was surveyed. The roof was a multi-layered structure comprising a semi-transparent film, an air layer, and a layer of insulation from the outside, supported by rafters. The soiled state was visually observed by taking photographs. On the northeast (NE) and northwest (NW) roofs, several black stripes appeared 4 months after cleaning. The soiling increased in the spring and autumn. The soiling first appeared on the film backed by the rafter and then extended to the film backed by the air layer. The condensation time during the day in the rafter part was longer than that in the air-layer part. Condensation occurred during the night, but its frequency exhibited no dependence on the orientation of the roof. Algae tend to die when exposed to an environment with a temperature higher than 45°C. The NE roof had the shortest period with a surface temperature of >45°C. These measurements agreed well with the survey results, which indicated that the soiling mainly occurred on the NE and NW sides of the roofs. The time for algal growth was estimated under the assumption that algae can grow at surface temperatures ranging from 0 to 45°C, in agreement with the observed soiling. The observed soiling changes were well explained by the algal population calculated via a growth predictive model according to the algal temperature and relative humidity.


2012 ◽  
Vol 182-183 ◽  
pp. 254-258
Author(s):  
Zhong Li Zhao ◽  
Zun Li Mo ◽  
Zhong Yu Chen

Cellulose/Ag/polyaniline conductive composite with rather excellent electrical conductivity was heterogeneously synthesized in this paper. The UV-Vis analysis indicated that homogeneous nanoAg particles deposited on the surface of cellulose in the form of globe particles. They offered some electrons to polyaniline chains. This behavior resulted to the facts that more polyaniline embedded on cellulose and an integrated electrically conductive network formed. Consequently, the high electrical conductivity of the composite was observed. The value was 3.48 S/cm, which was higher two magnitudes than the electrical conductivity of cellulose/polyaniline composite (2.15×10-2S/cm), and even was higher than the electrical conductivity of pure polyaniline (0.142 S/cm). This paper provided a facile method for the preparation of cellulose/Ag/ polyaniline composite with favorable electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document