Remarkable anisotropy in rhombohedral Ge2Sb2Te5 compound: a promising thermoelectric material with multiple conduction bands and acoustic-optical branches coupling

2021 ◽  
pp. 163471
Author(s):  
Jiale Miao ◽  
Pengfei Wang ◽  
Peng Zhou ◽  
Saifang Huang ◽  
Dongjie Qian ◽  
...  
RSC Advances ◽  
2013 ◽  
Vol 3 (22) ◽  
pp. 8504 ◽  
Author(s):  
A. Bhardwaj ◽  
A. Rajput ◽  
A. K. Shukla ◽  
J. J. Pulikkotil ◽  
A. K. Srivastava ◽  
...  

2018 ◽  
Vol 29 (3) ◽  
pp. 1806558 ◽  
Author(s):  
Xiaoying Liu ◽  
Dongyang Wang ◽  
Haijun Wu ◽  
Jinfeng Wang ◽  
Yang Zhang ◽  
...  

2017 ◽  
Vol 4 (10) ◽  
pp. 105907 ◽  
Author(s):  
Ismail Harran ◽  
Yucai Li ◽  
Hongyan Wang ◽  
Yuanzheng Chen ◽  
Yuxiang Ni

2016 ◽  
Vol 138 (50) ◽  
pp. 16364-16371 ◽  
Author(s):  
Yanling Pei ◽  
Cheng Chang ◽  
Zhe Wang ◽  
Meijie Yin ◽  
Minghui Wu ◽  
...  

1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1977 ◽  
Vol 16 (03) ◽  
pp. 100-103 ◽  
Author(s):  
C. Schümichen ◽  
J. Waiden ◽  
G. Hoffmann

SummaryThe kinetic data of two different 99mTc-Sn-pyrophosphate compounds (compound A and B) were evaluated in non-adult rats. Only compound A concentrated in bone. Both compounds dispersed rapidly in the intravascular as well as the extravascular space. The plasma protein bond of both compounds increased with time after injection and impaired both the renal clearance of both compounds and the bone clearance of compound A. The renal clearance of both compounds was somewhat above that of 5 1Cr-EDTA. It is concluded that compound A and B is mainly excreted by glomerular filtration. About one fourth of the glomerular filtrate of compound B is reabsorbed and accumulated by the tubular cells.


2020 ◽  
Author(s):  
Nathan O'Brien ◽  
Naokazu Kano ◽  
Nizam Havare ◽  
Ryohei Uematsu ◽  
Romain Ramozzi ◽  
...  

<div>The isolation and reactivities of two pentacoordinated phosphorus–tetracoordinated boron bonded compounds were</div><div>explored. A strong Lewis acidic boron reagent and electron-withdrawing ligand system were required to form the</div><div>pentacoordinated phosphorus state of the P–B bond. The first compound, a phosphoranyl-trihydroborate, gave a THF</div><div>stabilised phosphoranyl-borane intermediate upon a single hydride abstraction in THF. This compound could undergo a</div><div>unique rearrangement reaction, that involved a two-fold ring expansion, to give an unusual fused bicyclic compound or it</div><div>could act as a mono-hydroboration reagent. The hydroboration reactivity of the intermediate was found to be more reactive</div><div>towards alkynes over alkenes with good to moderate regioselectivity towards the terminal carbon. The second compound,</div><div>a phosphoranyl-triarylborate, was found to have a vastly different reactivity to the trihydroborate as it was highly stable</div><div>towards acids and bases. This is thought to be due to the large bulk around the P–B bond as shown in the crystal structure</div>


Author(s):  
Akanksha Gupta ◽  
Abhishek K Tripathi ◽  
Pushpraj S Gupta

Background: Bauhinia variegata Linn. is a native plant of Asia and China. B. variegata is found in tropical regions of the world. It belongs to family Leguminosae. It is used for diarrhea, hemorrhoids, constipation, piles, edema, leprosy, wounds, tumors, etc.  Objective: The objective of the present study was to perform extraction of B. variegata flower and isolation of active constituents from the extract. Materials and Methods: The ethanolic extraction of B. variegata flower was performed using the Soxhlet apparatus. The isolation of active constituents from the extract was performed using chromatographic techniques. In column chromatographic studies, n-hexane- [dichloromethane (DCM)] (2:8) was used as an eluting system and further purified through thin layer chromatography (TLC). Compound A and B were isolated through chromatographic techniques, then the molecular formula and characterization of these compounds were carried out with mass and infrared (IR) spectral analysis. Results and Discussion: The percentage yield of B. variegata ethanolic extract (BVE) was found to be 20.8% w/w. The different fractions were F1 having 12.5 grams with n-hexane, F2 (17.1 grams) with CH2Cl2, F3 (21.2 grams) with EtOAc, and F4 (13.4 grams) with EtOH. Compound A and B were isolated from the solvent fractions of n-hexane-DCM (2:8) and EtOAc-DCM (1:9), respectively. The compound A was characterized as 3-hydroxy-6-methoxy-2-phenyl-4H-chromen-4-one. The compound B was characterized as 3-hydroxy-6-methyl-2-phenyl-4H-chromen-4-one. Conclusion: Thus, B. variegata flowers possess active components that need to identify their biological activities.


2014 ◽  
Vol 31 (3) ◽  
pp. 221
Author(s):  
Junqin Li ◽  
Caiyan Wang ◽  
Zhengwang Lu ◽  
Haitao Li ◽  
Fusheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document