P1-137: Development of an in vivo magnetic resonance imaging method to evaluate hippocampus volume in APP and PS1 transgenic mice

2012 ◽  
Vol 8 (4S_Part_4) ◽  
pp. P153-P154
Author(s):  
Kerrie Hayes ◽  
Richard Buist ◽  
Trevor Vincent ◽  
Yanbo Zhang ◽  
Jonathan Thiessen ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


2001 ◽  
Vol 49 (3) ◽  
pp. 275-284
Author(s):  
Zs. Petrási ◽  
R. Romvári ◽  
G. Bajzik ◽  
B. Fenyves ◽  
I. Repa ◽  
...  

A dynamic magnetic resonance imaging (MRI) method was developed for in vivo examination of the pig heart. Measurements were carried out on 15 meat-type pigs of different liveweight using a 1.5 T equipment. Inhalation anaesthesia was applied, then data acquisition was synchronised by ECG gating. Depending on the heart rate and heart size, in each case 8 to 10 slices and in each slice 8 to 14 phases were acquired prospectively according to one heart cycle. During the post-processing of the images the left and the right ventricular volumes were determined. The values measured at 106 kg liveweight are 2.5 times higher than those obtained at 22 kg, while the ejection fractions are equal. The calculated cardiac output values were 3.5 l (22 kg, 132 beats/min.), and 6.0 l (106 kg, 91 beats/min.), respectively. After measuring the wall thickness, the contraction values were also determined for the septum (70%), and for the anterior (61%), posterior (41%) and lateral (54%) walls of the left ventricle. Three-dimensional animated models of the ventricles were constructed. Based on the investigations performed, the preconditioning, the anaesthetic procedure, the specific details of ECG measurement and the correct MR imaging technique were worked out.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59287 ◽  
Author(s):  
Michael J. House ◽  
Eng K. Gan ◽  
Leon A. Adams ◽  
Oyekoya T. Ayonrinde ◽  
Sander J. Bangma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document