P2-130: Amyloid imaging and cerebrospinal fluid biomarkers predict driving performance in preclinical Alzheimer's disease

2015 ◽  
Vol 11 (7S_Part_11) ◽  
pp. P533-P534 ◽  
Author(s):  
Catherine M. Roe ◽  
Peggy P. Barco ◽  
Denise M. Head ◽  
Nupur Ghoshal ◽  
Natalie Selsor ◽  
...  
2018 ◽  
Vol 15 (9) ◽  
pp. 820-827 ◽  
Author(s):  
Ryan Van Patten ◽  
Anne M. Fagan ◽  
David A.S. Kaufman

Background: There exists a need for more sensitive measures capable of detecting subtle cognitive decline due to Alzheimer's disease. Objective: To advance the literature in Alzheimer’s disease by demonstrating that performance on a cued-Stroop task is impacted by preclinical Alzheimer's disease neuropathology. Method: Twenty-nine cognitively asymptomatic older adults completed a computerized, cued-Stroop task in which accuracy rates and intraindividual variability in reaction times were the outcomes of interest. Cerebrospinal fluid biomarkers of Aβ42 and tau were measured and participants were then grouped according to a published p-tau/Aβ42 cutoff reflecting risk for Alzheimer’s disease (preclinical Alzheimer's disease = 14; control = 15). Results: ANOVAs indicated that accuracy rates did not differ between the groups but 4-second delay incongruent color-naming Stroop coefficient of variation reaction times were higher in the preclinical Alzheimer’s disease group compared to the control group, reflecting increased within-person variability. Moreover, partial correlations showed no relationships between cerebrospinal fluid biomarkers and accuracy rates. However, increases in coefficient of variation reaction times correlated with decreased Aβ42 and increases in p-tau and the p-tau/Aβ42 ratio. Conclusion: Results supported the ability of the computerized, cued-Stroop task to detect subtle Alzheimer’s disease neuropathology using a small cohort of cognitively asymptomatic older adults. The ongoing measurement of cued-Stroop coefficient of variation reaction times has both scientific and clinical utility in preclinical Alzheimer’s disease.


2017 ◽  
Vol 39 (2) ◽  
pp. 971-984 ◽  
Author(s):  
Christine L. Tardif ◽  
Gabriel A. Devenyi ◽  
Robert S. C. Amaral ◽  
Sandra Pelleieux ◽  
Judes Poirier ◽  
...  

2021 ◽  
Vol 79 (1) ◽  
pp. 225-235
Author(s):  
Maya Arvidsson Rådestig ◽  
Johan Skoog ◽  
Henrik Zetterberg ◽  
Jürgen Kern ◽  
Anna Zettergren ◽  
...  

Background: We have previously shown that older adults with preclinical Alzheimer’s disease (AD) pathology in cerebrospinal fluid (CSF) had slightly worse performance in Mini-Mental State Examination (MMSE) than participants without preclinical AD pathology. Objective: We therefore aimed to compare performance on neurocognitive tests in a population-based sample of 70-year-olds with and without CSF AD pathology. Methods: The sample was derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden. Participants (n = 316, 70 years old) underwent comprehensive cognitive examinations, and CSF Aβ-42, Aβ-40, T-tau, and P-tau concentrations were measured. Participants were classified according to the ATN system, and according to their Clinical Dementia Rating (CDR) score. Cognitive performance was examined in the CSF amyloid, tau, and neurodegeneration (ATN) categories. Results: Among participants with CDR 0 (n = 259), those with amyloid (A+) and/or tau pathology (T+, N+) showed similar performance on most cognitive tests compared to participants with A-T-N-. Participants with A-T-N+ performed worse in memory (Supra span (p = 0.003), object Delayed (p = 0.042) and Immediate recall (p = 0.033)). Among participants with CDR 0.5 (n = 57), those with amyloid pathology (A+) scored worse in category fluency (p = 0.003). Conclusion: Cognitively normal participants with amyloid and/or tau pathology performed similarly to those without any biomarker evidence of preclinical AD in most cognitive domains, with the exception of slightly poorer memory performance in A-T-N+. Our study suggests that preclinical AD biomarkers are altered before cognitive decline.


2021 ◽  
pp. 1-6
Author(s):  
Jagan A. Pillai ◽  
James Bena ◽  
Lynn M. Bekris ◽  
Nancy Foldvary-Schaefer ◽  
Catherine Heinzinger ◽  
...  

Sleep dysfunction has been identified in the pathophysiology of Alzheimer’s disease (AD); however, the role and mechanism of circadian rhythm dysfunction is less well understood. In a well-characterized cohort of patients with AD at the mild cognitive impairment stage (MCI-AD), we identify that circadian rhythm irregularities were accompanied by altered humoral immune responses detected in both the cerebrospinal fluid and plasma as well as alterations of cerebrospinal fluid biomarkers of neurodegeneration. On the other hand, sleep disruption was more so associated with abnormalities in circulating markers of immunity and inflammation and decrements in cognition.


2015 ◽  
Vol 44 (2) ◽  
pp. 525-539 ◽  
Author(s):  
Jeffrey L. Seeburger ◽  
Daniel J. Holder ◽  
Marc Combrinck ◽  
Catharine Joachim ◽  
Omar Laterza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document