Heart Rate Response to Caffeine Ingestion as a Predictor of Magnitude and Direction of Blood Pressure Changes

2018 ◽  
Vol 118 (10) ◽  
pp. A147
Author(s):  
E. Gockel-Blessing ◽  
E. Weiss ◽  
M. Ramel ◽  
K. Wright
2020 ◽  
Vol 128 (5) ◽  
pp. 1310-1320
Author(s):  
J. Krohova ◽  
L. Faes ◽  
B. Czippelova ◽  
R. Pernice ◽  
Z. Turianikova ◽  
...  

Baroreflex response consists of several arms, but the cardiac chronotropic arm (blood pressure changes evoking heart rate response) is usually analyzed. This study introduces a method to assess the vascular baroreflex arm with the continuous noninvasive measurement of peripheral vascular resistance as an output considering causality in the interaction between oscillations and slower dynamics of vascular tone changes. We conclude that although vascular baroreflex arm involvement becomes dominant during orthostasis, gain of this interaction is relatively stable.


2000 ◽  
Vol 39 (02) ◽  
pp. 200-203
Author(s):  
H. Mizuta ◽  
K. Yana

Abstract:This paper proposes a method for decomposing heart rate fluctuations into background, respiratory and blood pressure oriented fluctuations. A signal cancellation scheme using the adaptive RLS algorithm has been introduced for canceling respiration and blood pressure oriented changes in the heart rate fluctuations. The computer simulation confirmed the validity of the proposed method. Then, heart rate fluctuations, instantaneous lung volume and blood pressure changes are simultaneously recorded from eight normal subjects aged 20-24 years. It was shown that after signal decomposition, the power spectrum of the heart rate showed a consistent monotonic 1/fa type pattern. The proposed method enables a clear interpretation of heart rate spectrum removing uncertain large individual variations due to the respiration and blood pressure change.


Author(s):  
JACK H. WILMORE ◽  
PHILIP R. STANFORTH ◽  
JACQUES GAGNON ◽  
TREVA RICE ◽  
STEPHEN MANDEL ◽  
...  

1967 ◽  
Vol 46 (2) ◽  
pp. 307-315 ◽  
Author(s):  
E. DON STEVENS ◽  
D. J. RANDALL

1. Changes in blood pressure in the dorsal aorta, ventral aorta and subintestinal vein, as well as changes in heart rate and breathing rate during moderate swimming activity in the rainbow trout are reported. 2. Blood pressures both afferent and efferent to the gills increased during swimming and then returned to normal levels within 30 min. after exercise. 3. Venous blood pressure was characterized by periodic increases during swimming. The pressure changes were not in phase with the body movements. 4. Although total venous return to the heart increased during swimming, a decreased blood flow was recorded in the subintestinal vein. 5. Heart rate and breathing rate increased during swimming and then decreased when swimming ceased. 6. Some possible mechanisms regulating heart and breathing rates are discussed.


2010 ◽  
Vol 72 (5) ◽  
pp. 442-449 ◽  
Author(s):  
Jose M. Martinez ◽  
Amir Garakani ◽  
Horacio Kaufmann ◽  
Cindy J. Aaronson ◽  
Jack M. Gorman

2017 ◽  
Vol XXII (130) ◽  
pp. 60-70
Author(s):  
Mariana Werneck Fonseca ◽  
Verônica Batista de Albuquerque ◽  
Gabriel T. N. Martins Ferreira ◽  
Marcelo Augusto de Araújo ◽  
Wagner Luis Ferreira ◽  
...  

This article investigates the electrocardiographic and blood pressure changes caused by different doses of morphine administered epidurally to bitches undergoing elective ovariohysterectomy. Twenty-four healthy bitches weighing 9.8 ± 4.1 kg were assigned to three experimental groups (in each group, n = 8): (i) group M0.1: 0.1 mg/kg morphine; (ii) group M0.15: 0.15 mg/kg morphine; and (iii) group M0.2: 0.2 mg/kg morphine. In all groups, levobupivacaine was added to achieve a total volume of 0.33 mL/kg. During the procedures, the following parameters were controlled: heart rate and rhythm, systolic blood pressure, rectal temperature and blood lactate. The data were analyzed by means of statistical methods of analysis of variance, such as Kruskal-Wallis, Fisher and Tukey tests. Epidural morphine did not cause significant electrocardiographic or blood pressure changes in the tested doses, which makes the use of this drug a viable alternative for epidural anesthesia.


1982 ◽  
Vol 56 (5) ◽  
pp. 392-394 ◽  
Author(s):  
SERGIO M. GREGORETTI ◽  
YUNG JAI SOHN ◽  
ROBERTO L. SIA

1989 ◽  
Vol 76 (6) ◽  
pp. 567-572 ◽  
Author(s):  
Marco ROSSI ◽  
Giuliano Marti ◽  
Luigi Ricordi ◽  
Gabriele Fornasari ◽  
Giorgio Finardi ◽  
...  

1. The prevalence of cardiac autonomic alterations was evaluated in 23 obese subjects with body mass index 37.2 ± 3.03 kg/m2 (mean ± sd), compared with 78 controls with body mass index 22.5 ± 2.6 kg/m2 (P < 0.001). 2. Cardiac autonomic function was assessed by four standard tests (heart rate response to deep breathing and to the Valsalva manoeuvre, systolic blood pressure fall after standing and diastolic pressure rise during handgrip) and by the cross-correlation test, a new method of computerized analysis of respiratory sinus arrhythmia based on spectral analysis of electrocardiographic and respiratory signals. 3. Considering tests indicative of parasympathetic function, only the heart rate response to the deep breathing and the cross-correlation test were significantly lower in the obese than in the control group [deep breathing = 13.95 ± 8.65 beats/min (mean ± sd) vs 24.5 ± 7.65, P < 0.001; cross-correlation 4.28 ± 0.74 units vs 5.14 ± 0.63, P < 0.001]. Deep breathing and/or cross-correlation were abnormal in 10 (43.5%) obese subjects (deep breathing: seven subjects, cross-correlation: eight subjects). No significant difference between groups was found for the response to the Valsalva manoeuvre: the Valsalva ratio was 1.69 ± 0.45 in obese subjects and 1.88 ± 0.33 in controls (P = NS). The Valsalva ratio was abnormal in three obese subjects. 4. No significant differences were found between groups for tests indicative of sympathetic function. The rise in diastolic blood pressure after handgrip was 12.6 ± 6.2 mmHg (1.67 ± 0.82 kPa) in obese subjects and 18.2 ± 4.9 mmHg (2.42 ± 0.65 kPa) in controls (P = NS), and the fall in systolic blood pressure after standing was −6.8 ± 8.6 mmHg (−0.90 ± 1.14 kPa) in obese subjects and −6.9 ± 10.4 mmHg (−0.91 ± 1.38 kPa) in controls (P = NS). The handgrip test was abnormal in four obese subjects, while no obese subject had an abnormal blood pressure response to standing. 5. Our findings suggest a high incidence of cardiac autonomic dysfunction in obese subjects. Since cardiac autonomic alterations have been shown to be involved in the mechanisms of cardiac sudden death, our data suggest a possible role of autonomic dysfunction in the increased risk for sudden death in obesity.


Sign in / Sign up

Export Citation Format

Share Document