Smooth regression to estimate effective porosity using seismic attributes

2012 ◽  
Vol 76 ◽  
pp. 1-12 ◽  
Author(s):  
Ursula Iturrarán-Viveros
Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


2021 ◽  
Vol 71 ◽  
pp. 149-157
Author(s):  
Nur Farhana Salleh ◽  
◽  
Maman Hermana ◽  
Deva Prasad Ghosh

A subsurface resistivity model is important in hydrocarbon exploration primarily in the controlled-source electromagnetic (CSEM) method. CSEM forward modelling workflow uses resistivity model as the main input in feasibility studies and inversion process. The task of building a shaly sand resistivity model becomes more complex than clean sand due to the presence of a shale matrix. In this paper, a new approach is introduced to model a robust resistivity property of shaly sand reservoirs. A volume of seismic data and three wells located in the K-field of offshore Sarawak is provided for this study. Two new seismic attributes derived from seismic attenuation property called SQp and SQs are used as main inputs to predict the volume of shale, effective porosity, and water saturation before resistivity estimation. SQp attribute has a similar response to gamma-ray indicating the lithological variation and SQs attribute is identical to resistivity as an indicator to reservoir fluids. The petrophysical predictions are performed by solving the mathematical step-wise regression between the seismic multi-attributes and predicted petrophysical properties at the well locations. Subsequently, resistivity values are estimated using the Poupon-Leveaux (Indonesia) equation, an improvised model from Archie’s to derive the mathematical relationship of shaly sand’s resistivity to the volume and resistivity of clay matrix in shaly sand reservoirs. The resistivity modeled from the predicted petrophysical properties distributed consistently with sand distribution delineated from SQp attribute mainly in southeast, northeast, and west regions. The gas distribution of the net sand modeled by 5% and 90% of gas saturation scenarios also changed correspondingly to SQs attribute anomaly indicating the consistent fluid distribution between the modeled resistivity and SQs attribute.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 352-372 ◽  
Author(s):  
A. G. Pramanik ◽  
V. Singh ◽  
Rajiv Vig ◽  
A. K. Srivastava ◽  
D. N. Tiwary

The middle Eocene Kalol Formation in the north Cambay Basin of India is producing hydrocarbons in commercial quantity from a series of thin clastic reservoirs. These reservoirs are sandwiched between coal and shale layers, and are discrete in nature. The Kalol Formation has been divided into eleven units (K‐I to K‐XI) from top to bottom. Multipay sands of the K‐IX unit 2–8 m thick are the main hydrocarbon producers in the study area. Apart from their discrete nature, these sands exhibit lithological variation, which affects the porosity distribution. Low‐porosity zones are found devoid of hydrocarbons. In the available 3D seismic data, these sands are not resolved and generate a composite detectable seismic response, making reservoir characterization through seismic attributes impossible. After proper well‐to‐seismic tie, the major stratigraphic markers were tracked in the 3D seismic data volume for structural mapping and carrying out attribute analysis. The 3D seismic volume was inverted to obtain an acoustic impedance volume using a model‐based inversion algorithm, improving the vertical resolution and resolving the K‐IX pay sands. For better reservoir characterization, effective porosity distribution was estimated through different available techniques taking the K‐IX upper sand as an example. Various sample‐based seismic attributes, the impedance volume, and effective porosity logs were used as inputs for this purpose. These techniques are map‐based geostatistical methods using the acoustic impedance volume, stepwise multilinear regression, probabilistic neural networks (PNN) using multiattribute transforms, and a new technique that incorporates both geostatistics and multiattribute transforms (either linear or nonlinear). This paper is an attempt to compare different available techniques for porosity estimation. On comparison, it is found that the PNN‐based approach using ten sample‐based attributes showed highest crosscorrelation (0.9508) between actual and predicted effective porosity logs at eight wells in the study area. After validation, the predicted effective porosity maps for the K‐IX upper sand are generated using different techniques, and a comparison among them is made. The predicted effective porosity map obtained from PNN‐based model provides more meaningful information about the K‐IX upper sand reservoir. In order to give priority to the actual effective porosity values at wells, the predicted effective porosity map obtained from PNN‐based model for the K‐IX upper sand was combined with actual effective porosity values using co‐kriging geostatistical technique. This final map provides geologically more realistic predicted effective porosity distribution and helps in understanding the subsurface image. The implication of this work in exploration and development of hydrocarbons in the study area is discussed.


2017 ◽  
Author(s):  
Gabin Archambault

This 5 km resolution grid presents groundwater storage in Africa (in mm). This parameter was estimated by combining the saturated aquifer thickness and effective porosity of aquifers across Africa. For each aquifer flow/storage type an effective porosity range was assigned based on a series of studies across Africa and surrogates in other parts of the world. Groundwater storage is given in millimeters. Detailed description of the methodology, and a full list of data sources used to develop the layer can be found in the peer-reviewed paper available here: http://iopscience.iop.org/article/10.1088/1748-9326/7/2/024009/pdf The raster and a high resolution PDF file are available for download on the website of British Geological Survey (BGS): http://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html Groundwater Storage


Sign in / Sign up

Export Citation Format

Share Document