Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems

2012 ◽  
Vol 83 ◽  
pp. 69-77 ◽  
Author(s):  
F. Kizito ◽  
M.I. Dragila ◽  
M. Senè ◽  
J.R. Brooks ◽  
F.C. Meinzer ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
J. Julio Camarero ◽  
Cristina Valeriano ◽  
Antonio Gazol ◽  
Michele Colangelo ◽  
Raúl Sánchez-Salguero

Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.


1986 ◽  
Vol 31 (3) ◽  
pp. 319 ◽  
Author(s):  
William L. Slauson ◽  
Richard T. Ward
Keyword(s):  

2003 ◽  
Vol 118 (4) ◽  
pp. 562-570 ◽  
Author(s):  
M. M. Alguacil ◽  
J. A. Hernández ◽  
F. Caravaca ◽  
B. Portillo ◽  
A. Roldán

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1039 ◽  
Author(s):  
Marinos Eliades ◽  
Adriana Bruggeman ◽  
Hakan Djuma ◽  
Maciek Lubczynski

This study aims to examine interactions between tree characteristics, sap flow, and environmental variables in an open Pinus brutia (Ten.) forest with shallow soil. We examined radial and azimuthal variations of sap flux density (Jp), and also investigated the occurrence of hydraulic redistribution mechanisms, quantified nocturnal tree transpiration, and analyzed the total water use of P. brutia trees during a three-year period. Sap flow and soil moisture sensors were installed onto and around eight trees, situated in the foothills of the Troodos Mountains, Cyprus. Radial observations showed a linear decrease of sap flux densities with increasing sapwood depth. Azimuthal differences were found to be statistically insignificant. Reverse sap flow was observed during low vapor pressure deficit (VPD) and negative air temperatures. Nocturnal sap flow was about 18% of the total sap flow. Rainfall was 507 mm in 2015, 359 mm in 2016, and 220 mm in 2017. Transpiration was 53%, 30%, and 75%, respectively, of the rainfall in those years, and was affected by the distribution of the rainfall. The trees showed an immediate response to rainfall events, but also exploited the fractured bedrock. The transpiration and soil moisture levels over the three hydrologically contrasting years showed that P. brutia is well-adapted to semi-arid Mediterranean conditions.


Author(s):  
Antonio I. Arroyo ◽  
Yolanda Pueyo ◽  
Hugo Saiz ◽  
Concepción L. Alados

AbstractAn understanding of the diversity spatial organization in plant communities provides essential information for management and conservation planning. In this study we investigated, using a multi-species approach, how plant–plant interactions determine the local structure and composition of diversity in a set of Mediterranean plant communities, ranging from semi-arid to subalpine habitats. Specifically, we evaluated the spatial pattern of diversity (i.e., diversity aggregation or segregation) in the local neighborhood of perennial plant species using the ISAR (individual species–area relationship) method. We also assessed the local pattern of beta-diversity (i.e., the spatial heterogeneity in species composition among local assemblages), including the contribution of species turnover (i.e., species replacement) and nestedness (i.e., differences in species richness) to the overall local beta-diversity. Our results showed that local diversity segregation decreased in the less productive plant communities. Also, we found that graminoids largely acted as diversity segregators, while forbs showed more diverse neighborhoods than expected in less productive study sites. Interestingly, not all shrub and dwarf shrub species aggregated diversity in their surroundings. Finally, an increase in nestedness was associated with less segregated diversity patterns in the local neighborhood of shrub species, underlining their role in creating diversity islands in less productive environmental conditions. Our results provide further insights into the effect of plant–plant interactions in shaping the structure and composition of diversity in Mediterranean plant communities, and highlight the species and groups of species that management and conservation strategies should focus on in order to prevent a loss of biodiversity.


2021 ◽  
Vol 195 ◽  
pp. 104629
Author(s):  
Ziyang Gui ◽  
Luchen Li ◽  
Shugao Qin ◽  
Yuqing Zhang

Sign in / Sign up

Export Citation Format

Share Document