Mesospheric wind diurnal tides within the Canadian Middle Atmosphere Model Data Assimilation System

2012 ◽  
Vol 74 ◽  
pp. 24-43 ◽  
Author(s):  
X. Xu ◽  
A.H. Manson ◽  
C.E. Meek ◽  
D.M. Riggin ◽  
Ch. Jacobi ◽  
...  
2007 ◽  
Vol 7 (4) ◽  
pp. 9717-9767
Author(s):  
◽  
K. Raeder ◽  
J. L. Anderson ◽  
P. G. Hess ◽  
L. K. Emmons ◽  
...  

Abstract. We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument. We verify the system performance using independent CO observations taken on board the NSF/NCAR C-130 and NASA DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides significant improvements in terms of capturing the observed CO variability relative to no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at 99% confidence). The assimilation provides evidence of median CO loading of about 150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher than the modeled CO with no MOPITT assimilation (~140 ppbv). Our ensemble-based estimates of model uncertainty also show model overprediction over the source region (i.e. China) and underprediction over the NE Pacific, suggesting model errors that cannot be readily explained by emissions alone. These results have important implications for improving regional chemical forecasts and for inverse modeling of CO sources and further demonstrates the utility of the assimilation system in comparing non-coincident measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measurements.


2007 ◽  
Vol 7 (21) ◽  
pp. 5695-5710 ◽  
Author(s):  
◽  
K. Raeder ◽  
J. L. Anderson ◽  
P. G. Hess ◽  
L. K. Emmons ◽  
...  

Abstract. We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument. We verify the system performance using independent CO observations taken on board the NSF/NCAR C-130 and NASA DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides significant improvements in terms of capturing the observed CO variability relative to no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at 99% confidence). The assimilation provides evidence of median CO loading of about 150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher than the modeled CO with no MOPITT assimilation (~140 ppbv). Our ensemble-based estimates of model uncertainty also show model overprediction over the source region (i.e. China) and underprediction over the NE Pacific, suggesting model errors that cannot be readily explained by emissions alone. These results have important implications for improving regional chemical forecasts and for inverse modeling of CO sources and further demonstrate the utility of the assimilation system in comparing non-coincident measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measurements.


2021 ◽  
Author(s):  
Hamze Dokoohaki ◽  
Bailey D. Morrison ◽  
Ann Raiho ◽  
Shawn P. Serbin ◽  
Michael Dietze

Abstract. The ability to monitor, understand, and predict the dynamics of the terrestrial carbon cycle requires the capacity to robustly and coherently synthesize multiple streams of information that each provide partial information about different pools and fluxes. In this study, we introduce a new terrestrial carbon cycle data assimilation system, built on the PEcAn model-data eco-informatics system, and its application for the development of a proof-of-concept carbon "reanalysis" product that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. We first calibrated this system against plant trait and flux tower Net Ecosystem Exchange (NEE) using a novel emulated hierarchical Bayesian approach. Next, we extended the Tobit-Wishart Ensemble Filter (TWEnF) State Data Assimilation (SDA) framework, a generalization of the common Ensemble Kalman Filter which accounts for censored data and provides a fully Bayesian estimate of model process error, to a regional-scale system with a calibrated localization. Combined with additional workflows for propagating parameter, initial condition, and driver uncertainty, this represents the most complete and robust uncertainty accounting available for terrestrial carbon models. Our initial reanalysis was run on an irregular grid of ~500 points selected using a stratified sampling method to efficiently capture environmental heterogeneity. Remotely sensed observations of aboveground biomass (Landsat LandTrendr) and LAI (MODIS MOD15) were sequentially assimilated into the SIPNET model. Reanalysis soil carbon, which was indirectly constrained based on modeled covariances, showed general agreement with SoilGrids, an independent soil carbon data product. Reanalysis NEE, which was constrained based on posterior ensemble weights, also showed good agreement with eddy flux tower NEE and reduced RMSE compared to the calibrated forecast. Ultimately, PEcAn's carbon cycle reanalysis provides a scalable framework for harmonizing multiple data constraints and providing a uniform synthetic platform for carbon monitoring, reporting, and verification (MRV) and accelerating terrestrial carbon cycle research.


Data ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 142 ◽  
Author(s):  
Gabriel Cazes Boezio ◽  
Sofía Ortelli

This work assessed the quality of wind speed estimates in Uruguay. These estimates were obtained using the Weather Research and Forecast Model Data Assimilation System (WRF-DA) to assimilate wind speed measurements from 100 m above the ground at two wind farms. The quality of the estimates was assessed with an anemometric station placed between the wind farms. The wind speed estimates showed low systematic errors at heights of 87 and 36 m above the ground. At both levels, the standard deviation of the total errors was approximately 25% of the mean observed speed. These results suggested that the estimates obtained could be of sufficient quality to be useful in various applications. The assimilation process proved to be effective, spreading the observational gain obtained at the wind farms to lower elevations than those at which the assimilated measurements were taken. The smooth topography of Uruguay might have contributed to the relatively good quality of the obtained wind estimates, although the data of only two stations were assimilated, and the resolution of the regional atmospheric simulations employed was relatively low.


Sign in / Sign up

Export Citation Format

Share Document