On the vertical distribution of carbon monoxide over Bay of Bengal during winter: Role of water vapour and vertical updrafts

2014 ◽  
Vol 117 ◽  
pp. 31-47 ◽  
Author(s):  
I.A. Girach ◽  
Prabha R. Nair
2018 ◽  
Author(s):  
Venugopal Thushara ◽  
Puthenveettil Narayana Menon Vinayachandran ◽  
Adrian J. Matthews ◽  
Benjamin G. M. Webber ◽  
Bastien Y. Queste

Abstract. The Bay of Bengal (BoB) generally exhibits surface oligotrophy, due to nutrient limitation induced by strong salinity stratification. Nevertheless, there are hot spots of biological activity in the BoB where the monsoonal forcings are strong enough to break the stratification; one such region being the southern BoB, east of Sri Lanka. A recent field program conducted during the summer monsoon of 2016, as a part of the Bay of Bengal Boundary Layer Experiment (BoBBLE), provides a unique high-resolution dataset of the vertical distribution of chlorophyll in the southern BoB using ocean gliders along with shipboard CTD measurements. Observations were carried out for a duration of 12–20 days during a suppressed phase of the Boreal Summer Intraseasonal Oscillation (BSISO), along a longitudinal transect at 8° N, extending from 85.3–89° E, covering the dynamically active regions of the Sri Lanka Dome (SLD) and the South- west Monsoon Current (SMC). Mixing and upwelling induced by the monsoonal wind forcing enhanced chlorophyll concentrations (0.3–0.7 mg m−3) in the surface layers. Observations reveal the presence of prominent deep chlorophyll maxima (DCM; 0.3–1.2 mg m−3) at intermediate depths (20–50 m), generally below the mixed layer and above the thermocline, signifying the contribution of subsurface productivity on the biological carbon cycling in the BoB. The shape of chlorophyll profiles varied in different dynamical regimes indicating that the mechanisms determining the vertical distribution of chlorophyll are intricate; upwelling favoured sharp and intense DCM, whereas mixing resulted in diffuse and weaker DCM. Within the SLD, open ocean Ekman pumping and the doming of thermocline favoured a substantial increase in chlorophyll concentration. Farther east, the thermocline was deeper and moderate surface blooms were triggered by intermittent mixing events. Stabilising surface freshening events and barrier layer formation were often observed to inhibit the surface blooms. The pathway of SMC intrusion was marked by a distinct band of chlorophyll, indicating the advective effect of biologically rich Arabian Sea waters. The region of monsoon current exhibits the strongest DCM as well as the highest column-integrated chlorophyll. Observations suggest that the persistence of DCM in the southern BoB is promoted by surface oligotrophy, which reduces the self-shading effect of phytoplankton and shallow mixed layers, which prevent the vertical redistribution of subsurface phytoplankton. Results from a coupled physical-ecosystem model substantiate the dominant role of mixed layer processes associated with the monsoon in controlling the nutrient distribution and biological productivity in the southern BoB. The present study provides new insights into the vertical distribution of chlorophyll in the BoB, which is not captured in satellite mea- surements, emphasizing the need for extensive in situ sampling and ecosystem model-based efforts for a better understanding of the monsoonal bio-physical interactions and the potential climatic feedbacks.


2014 ◽  
Vol 955-959 ◽  
pp. 1003-1008
Author(s):  
Zhen Zhen Ma ◽  
Yu Guo ◽  
Zheng Yu Bao ◽  
Guo Ai Wu ◽  
Yang Rong Fu

An investigation on heavy metal content in agricultural soil growing pineapples was carried out in Hainan Province. The horizontal and vertical distribution of heavy metal in different areas was studied. The sources of heavy metal were conducted using principal component analysis. Generally the study areas were less affected by human activity factors and the overall environmental quality was quite better. The uneven horizontal distribution of heavy metal was controlled mainly by the soil parent material and the vertical distribution of heavy metal was limited by both the role of human activities and the natural effect combined.


2018 ◽  
Vol 144 (713) ◽  
pp. 1091-1105 ◽  
Author(s):  
Lokesh K. Sahu ◽  
Nidhi Tripathi ◽  
Varun Sheel ◽  
Mizuo Kajino ◽  
Makoto Deushi ◽  
...  

Hydrobiologia ◽  
2006 ◽  
Vol 553 (1) ◽  
pp. 231-243 ◽  
Author(s):  
Marko Miliša ◽  
Ivan Habdija ◽  
Biserka Primc-Habdija ◽  
Ines Radanović ◽  
Renata Matoničkin Kepčija

Sign in / Sign up

Export Citation Format

Share Document