soil parent material
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Félix de Tombeur ◽  
Jean-Thomas Cornelis ◽  
Etienne Laliberté ◽  
Hans Lambers ◽  
Grégory Mahy ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5127
Author(s):  
Lu Wei ◽  
Meichen Wang ◽  
Guijian Liu ◽  
Dun Wu

Lime mines are a potential source of pollution, and the surrounding soil environment is generally at threat, especially in abandoned lime mines. This paper focuses on the study area in eastern Anhui, attempting to analyze whether Cd enrichment is related to abandoned mines. On the basis of geological investigation, this study systematically used XRD, XRF, GTS and universal Kriging interpolation to determine the distribution law of Cd in the study area, and evaluated the potential ecological risk of Cd. The results showed that the main mineral types of soil samples of red clastic rock soil parent material (RdcPm) and soil samples of carbonate soil parent material (CPm) were not completely the same. Correlation analysis showed that CaO, MgO and Cd were positively correlated with the CPm. Human activities led to the accumulation of Cd in the study area. High Cd was mainly concentrated in the northwest of the study area, which was correlated with abandoned mines and soil parent materials. The study area was dominated by slight potential risks, although some areas had medium potential risks and high potential risks. All potential high risks were in the CPm field. This study provides a scientific basis for the comprehensive utilization and development planning of soil in the study area.


2021 ◽  
Vol 48 (2) ◽  
pp. 205-214
Author(s):  
Panagiotis Michopoulos

Abstract The distribution and cycling of nickel (Ni) in forests is greatly affected by their proximity to emission sources of the metal. The throughfall deposition is always richer in Ni than the bulk deposition. It can be inferred that some dry deposition enriches the throughfall. In remote forested areas, the hydrological fluxes of Ni do not differ a lot from those in litterfall. In addition, the current year needles in conifers have higher concentrations than the older needles, a sign of absorption and mobility of the metal. In contrast, near an industrial Ni source the older needles accumulate much more of the metal. The Ni content in bark tissue can be used to map the deposition distribution of the metal around an area (rural or urban). The concentrations of Ni in forest soils is also dependent on their distances from the Ni emission sources and the nature of the soil parent material. The Ni concentrations increase with soil depth due to the geogenic origin of the metal. Low pH greatly enhances the mobility of the metal in soils, much more than the leachability of organic matter.


2021 ◽  
pp. e00412
Author(s):  
Fellipe A.O. Mello ◽  
Henrique Bellinaso ◽  
Danilo C. Mello ◽  
José L. Safanelli ◽  
Wanderson De S. Mendes ◽  
...  

Author(s):  
Yiwei Zhao ◽  
Liangmin Gao ◽  
Fugeng Zha ◽  
Xiaoqing Chen ◽  
Xiaofang Zhou ◽  
...  

AbstractDue to the special sensitivity of typical ecologically fragile areas, a series of human life, mining, and other activities have a greater impact on the environment. In this study, three coal mines in Ordos City on the Loess Plateau were selected as the study area, and the pollution levels of heavy metals in the area were studied by measuring As, Hg, Cr, Cd, Cu, Ni, and Pb in the soil of 131 sampling points. Combined with the concept of “co-occurrence network” in biology, the level of heavy metals in soil was studied using geostatistics and remote sensing databases. The results showed that the concentrations of Hg, Cr, Ni, Cu, and Pb in more than half of the sampling points were higher than the local environmental background value, but did not exceed the risk control value specified by China, indicating that human factors have a greater influence, while Cd and As elements are mainly affected Soil parent material and human factors influence. Heavy metal elements have nothing to do with clay and silt but have an obvious correlation with gravel. Cd, Pb, As and Ni, Cd, Cr are all positively correlated, and different heavy metals are in space The distribution also reflects the autocorrelation, mainly concentrated in the northeast of the TS mining area and the middle of the PS mining area.


2021 ◽  
Author(s):  
Benjamin Bukombe ◽  
Peter Fiener ◽  
Alison M. Hoyt ◽  
Sebastian Doetterl

<p>Tropical forest soils are a vital component of the global carbon (C) cycle and their response to environmental change will determine future atmospheric carbon dioxides (CO<sub>2</sub>). For example, increasing biomass productivity in tropical forests suggests a potential sink for C. However, its storage and stability are driven by factors acting from small to large scale. For tropical Africa, these factors are not well known and documented.  Predicting tropical soil C dynamics ultimately depends on our understanding and the ability to determine the primary environmental controls on soil organic carbon content and respiration.</p><p>Here, using samples collected along strong geochemical gradients in the East African Rift Valley, we demonstrate how soil chemistry and soil fertility, derived from the geochemical composition of soil parent material, can drive soil respiration even in deeply weathered soils. </p><p>To address the drivers of soil respiration, we incubated soils from three regions with contrasting geochemistry (mafic, felsic, and mixed sedimentary). For three soil depths, we measured the potential maximum heterotrophic respiration as well as the radiocarbon isotopic signature (Δ<sup>14</sup>C) of the bulk soil and respired CO<sub>2</sub> under stable environmental conditions. </p><p>We found that soil microbial communities were able to mineralize C from fossil as well as other poor quality C sources under laboratory conditions representative of tropical topsoils. Despite similarities in terms of climate, vegetation, and the size of soil C stocks, soil respiration showed distinct patterns with soil depth and parent material geochemistry. Our study shows that soil fertility conditions are the main determinant of C stability in tropical forest soils. Further, in the presence of organic carbon sources of poor quality or the presence of strong mineral-related C stabilization, microorganisms tend to discriminate against these sources in favor of more accessible forms of soil organic matter as energy sources, resulting in a slower rate of C cycling. </p><p>Our results demonstrate that even in deeply weathered tropical soils, parent material has a long-lasting effect on soil chemistry that can influence and control microbial activity, the size of subsoil C stocks, and the turnover of C in soil. Soil parent material and its lasting control on soil chemistry need to be taken into account to understand and predict C stabilization and rates of C cycling in tropical forest soils. </p>


2021 ◽  
Author(s):  
Benjamin Bukombe ◽  
Peter Fiener ◽  
Alison M. Hoyt ◽  
Sebastian Doetterl

Abstract. Heterotrophic soil respiration is an important component of the global terrestrial carbon (C) cycle, driven by environmental factors acting from local to continental scales. For tropical Africa, these factors and their interactions remain largely unknown. Here, using samples collected along strong topographic and geochemical gradients in the East African Rift Valley, we study how soil chemistry and soil fertility, derived from the geochemical composition of soil parent material, can drive soil respiration even after many millennia of weathering and soil development. To address the drivers of soil respiration, we incubated soils from three regions with contrasting geochemistry (mafic, felsic, and mixed sedimentary) sampled along slope gradients. For three soil depths, we measured the potential maximum heterotrophic respiration under stable environmental conditions as well as the radiocarbon content (Δ14C) of the bulk soil and respired CO2. We found that soil microbial communities were able to mineralize C from fossil as well as other poor quality C sources under laboratory conditions representative of tropical topsoils. Furthermore, despite similarities in terms of climate, vegetation, and the size of soil C stocks, soil respiration showed distinct patterns with soil depth and parent material geochemistry. The topographic origin of our samples was not a main determinant of the observed respiration rates and Δ14C. In situ, however, soil hydrological conditions likely influence soil C stability by inhibiting decomposition in valley subsoils. Our study shows that soil fertility conditions are the main determinant of C stability in tropical forest soils. Further, in the presence of organic carbon sources of poor quality or the presence of strong mineral related C stabilization, microorganisms tend to discriminate against these sources in favor of more accessible forms of soil organic matter as energy sources, resulting in a slower rate of C cycling. Our results demonstrate that even in deeply weathered tropical soils, parent material has a long-lasting effect on soil chemistry that can influence and control microbial activity, the size of subsoil C stocks, and the turnover of C in soil. Soil parent material and its lasting control on soil chemistry need to be taken into account to understand and predict C stabilization and rates of C cycling in tropical forest soils.


Soil Research ◽  
2021 ◽  
Author(s):  
Ho Jun Jang ◽  
Mercedes Roman Dobarco ◽  
Budiman Minasny ◽  
Alex McBratney

Author(s):  
Shane Robert Furze ◽  
Paul Arp

There is a growing demand for standardized, easily accessible and detailed information pertaining to soil and its variability across the landscape. Typically, this information is only available for select areas in the form of local or regional soil surveys reports which are difficult, and costly, to develop. Additionally, soil surveying protocols have changed with time, resulting in inconsistencies between surveys conducted over different periods. This article describes systematic procedures applied to generate an aspatial, terminologically- and unit-consistent, database for forest soils from county-based soil survey reports for the province of New Brunswick, Canada. The procedures involved (i) amalgamating data from individual soil surveys following a hierarchical framework, (ii) summarizing and grouping soil information by soil associations, (iii) assigning correct soil associates to each association, with each soil associate distinguished by drainage classification, (iv) assigning pedologically-correct horizon sequences, as identified in the original soil surveys, to each soil associate, (v) assigning horizon descriptors and measured soil properties to each horizon, as outlined by the Canadian System of Soil Classification, and (vi) harmonizing units of measurement for individual soil properties. Identification and summarization of all soil associations (and corresponding soil associates) was completed with reference to the principal soil-forming factors, namely soil parent material, topographic surface expressions, soil drainage, and dominant vegetation type(s). This procedure, utilizing 17 soil surveys, resulted in an amalgamated database containing 106 soil associations, 243 soil associates, and 522 soil horizon sequences summarizing the variability of forest soil conditions across New Brunswick.


2020 ◽  
Vol 18 (1) ◽  
pp. 1391-1411
Author(s):  
Rimantė Zinkutė ◽  
Ričardas Taraškevičius ◽  
Margarita Jankauskaitė ◽  
Vaidotas Kazakauskas ◽  
Žilvinas Stankevičius

AbstractThis study of peri-urban minerogenic topsoil on glacigenic or post-glacial deposits shows the influence of the site-classification approach on the differentiated median background (DMB) values of major elements and the potentially harmful elements (PHEs) Ba, Cr, Cu, Mn, Ni, Pb and Zn. Composite samples from forests and meadows were taken in 25 sites, each of which had five sub-sites. A fraction of <2 mm was used to determine the organic matter by loss on ignition (LOI), grain size by laser diffraction and the elemental contents by X-ray fluorescence. The following five site-classification approaches are compared: geochemical (G), using relative median contents of Al, K, Ti; textural (T), according to mean percentages of clay-sized fraction (CLF) and silt fraction (SIF); lithological (L), based on soil parent material texture from the soil database; soil type (S), presented in the soil database; and parent material (P), generalising the underlying Quaternary deposits. Sites were classified into four level groups in which the DMB values were estimated after eliminating anomalies. The average ranks of three scores according to SIF, CLF, LOI, Al, K, Ti, Fe, Mg, Ca and S in the respective groups revealed the highest value for the G approach. It better eliminates the CLF and SIF influences on the median assessment indices of PHEs in sites.


Sign in / Sign up

Export Citation Format

Share Document