scholarly journals Multifunctional protein 4.1R regulates the asymmetric segregation of Numb during terminal erythroid maturation

2021 ◽  
pp. 101051
Author(s):  
Shu-Ching Huang ◽  
Long V. Vu ◽  
Faye H. Yu ◽  
Dan T. Nguyen ◽  
Edward J. Benz
Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1393
Author(s):  
Thanyaporn Dechtawewat ◽  
Sittiruk Roytrakul ◽  
Yodying Yingchutrakul ◽  
Sawanya Charoenlappanit ◽  
Bunpote Siridechadilok ◽  
...  

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


2021 ◽  
Vol 22 (3) ◽  
pp. 1343
Author(s):  
Hye Hyeon Yun ◽  
Soon Young Jung ◽  
Bong Woo Park ◽  
Ji Seung Ko ◽  
Kyunghyun Yoo ◽  
...  

BCL-2 interacting cell death suppressor (BIS) is a multifunctional protein that has been implicated in cancer and myopathy. Various mutations of the BIS gene have been identified as causative of cardiac dysfunction in some dilated cardiomyopathy (DCM) patients. This was recently verified in cardiac-specific knock-out (KO) mice. In this study, we developed tamoxifen-inducible cardiomyocyte-specific BIS-KO (Bis-iCKO) mice to assess the role of BIS in the adult heart using the Cre-loxP strategy. The disruption of the Bis gene led to impaired ventricular function and subsequent heart failure due to DCM, characterized by reduced left ventricular contractility and dilatation that were observed using serial echocardiography and histology. The development of DCM was confirmed by alterations in Z-disk integrity and increased expression of several mRNAs associated with heart failure and remodeling. Furthermore, aggregation of desmin was correlated with loss of small heat shock protein in the Bis-iCKO mice, indicating that BIS plays an essential role in the quality control of cardiac proteins, as has been suggested in constitutive cardiac-specific KO mice. Our cardiac-specific BIS-KO mice may be a useful model for developing therapeutic interventions for DCM, especially late-onset DCM, based on the distinct phenotypes and rapid progressions.


2002 ◽  
Vol 15 (10) ◽  
pp. 1050-1057 ◽  
Author(s):  
Yongzhong Li ◽  
Scott M. Leisner

The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral propagation. It is likely that at least some of these functions require P6 self-association. The work described here was performed to confirm that P6 self-associates and to identify domains involved in this interaction. Yeast two-hybrid analyses indicated that full-length P6 self-associates and that this interaction is specific. Additional analyses indicated that at least four independent domains bind to full-length P6. When a central domain (termed domain D3) was removed, these interactions were abolished. However, this deleted P6 was able to bind to the full-length wild-type protein and to isolated domain D3. Viruses lacking domain D3 were incapable of producing a systemic infection. Isolated domain D3 was capable of binding to at least two of the other domains but was unable to self-associate. This suggests that domain D3 facilitates P6 self-association by binding to the other domains but not itself. The presence of multiple domains involved in P6 self-association may help explain the ability of this protein to form the intracellular inclusions characteristic of caulimoviruses.


Sign in / Sign up

Export Citation Format

Share Document