scholarly journals Flipping the switch: how cysteine oxidation directs tau amyloid conformations

2021 ◽  
pp. 101309
Author(s):  
Danny M. Hatters
Keyword(s):  
2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


1974 ◽  
Vol 63 (1) ◽  
pp. 117-124 ◽  
Author(s):  
J. L. H. O'RIORDAN ◽  
J. S. WOODHEAD ◽  
G. N. HENDY ◽  
J. A. PARSONS ◽  
C. J. ROBINSON ◽  
...  

SUMMARY The presence of a single methionine in porcine parathyroid hormone, at position 8, permitted assessment of the role of this residue separate from the second methionine residue found at position 18 of bovine and human parathyroid hormones. Oxidation of the solitary methionine of porcine parathyroid hormone to the sulphoxide destroyed biological activity, but this was restored by subsequent reduction with cysteine. Oxidation of the hormone did not, however, affect its immunological activity; therefore, oxidation of the hormone may bring about dissociation of biological and immunological activity.


2012 ◽  
Vol 53 ◽  
pp. S137-S138
Author(s):  
Shibani Ratnayake ◽  
Shibani Ratnayake ◽  
Christopher Dunston ◽  
Eric Lattmann ◽  
Helen Griffiths

1956 ◽  
Vol 21 (1) ◽  
pp. 173-174 ◽  
Author(s):  
Irwin Fridovich ◽  
Philip Handler
Keyword(s):  

2019 ◽  
Vol 6 (4) ◽  
pp. 1009-1013 ◽  
Author(s):  
André H. B. Dourado ◽  
Matthias Arenz ◽  
Susana I. Córdoba de Torresi
Keyword(s):  

2019 ◽  
Author(s):  
Lisa Alcock ◽  
Maike Langini ◽  
Kai Stühler ◽  
Marc Remke ◽  
Michael Perkins ◽  
...  

<p>Detection of cysteine sulfenic acid in live cells is critical in advancing our understanding of cysteine redox chemistry and its biological function. Accordingly, there is a need to develop sulfenic acid-specific chemical probes with distinct reaction mechanisms to facilitate proteome-wide detection of this important posttranslational modification. Herein, we report the first whole-cell proteomics analysis using a norbornene probe to detect cysteine sulfenic acid in live HeLa cells. Comparison of the enriched proteins to those identified using dimedone and other <i>C</i>-nucleophilic probes revealed a complementary reactivity profile. Remarkably, 148 new members of the sulfenome were identified. These discoveries highlight how subtle differences in chemical reactivity of both the probes and cysteine residues influence detection. Overall, this study expands our understanding of protein oxidation at cysteine and reveals new proteins to consider for future studies of cysteine oxidation, redox regulation and signaling, and the biochemistry of oxidative stress. </p>


2018 ◽  
Author(s):  
Lisa Alcock ◽  
Bruno Oliveira ◽  
Michael Deery ◽  
Tara Pukala ◽  
Michael Perkins ◽  
...  

Norbornene derivatives were validated as probes for cysteine sulfenic acid on proteins and in live cells. Trapping sulfenic acids with norbornene probes is highly selective and revealed a different reactivity profile than the traditional dimedone reagent. The norbornene probe also revealed a superior chemoselectivity when compared to a commonly used dimedone probe. Together, these results advance the study of cysteine oxidation in biological systems.


2019 ◽  
Author(s):  
Lisa Alcock ◽  
Maike Langini ◽  
Kai Stühler ◽  
Marc Remke ◽  
Michael Perkins ◽  
...  

<p>Detection of cysteine sulfenic acid in live cells is critical in advancing our understanding of cysteine redox chemistry and its biological function. Accordingly, there is a need to develop sulfenic acid-specific chemical probes with distinct reaction mechanisms to facilitate proteome-wide detection of this important posttranslational modification. Herein, we report the first whole-cell proteomics analysis using a norbornene probe to detect cysteine sulfenic acid in live HeLa cells. Comparison of the enriched proteins to those identified using dimedone and other <i>C</i>-nucleophilic probes revealed a complementary reactivity profile. Remarkably, 148 new members of the sulfenome were identified. These discoveries highlight how subtle differences in chemical reactivity of both the probes and cysteine residues influence detection. Overall, this study expands our understanding of protein oxidation at cysteine and reveals new proteins to consider for future studies of cysteine oxidation, redox regulation and signaling, and the biochemistry of oxidative stress. </p>


2020 ◽  
Author(s):  
Bo Wei ◽  
Patrick Willems ◽  
Jingjing Huang ◽  
Caiping Tian ◽  
Jing Yang ◽  
...  

ABSTRACTIn proteins, hydrogen peroxide (H2O2) reacts with redox-sensitive cysteines to form cysteine sulfenic acid, also known as S-sulfenylation. These cysteine oxidation events can steer diverse cellular processes by altering protein interactions, trafficking, conformation, and function. Previously, we had identified S-sulfenylated proteins by using a tagged proteinaceous probe based on the yeast AP-1–like (Yap1) transcription factor that specifically reacts with sulfenic acids and traps them through a mixed disulfide bond. However, the identity of the S-sulfenylated amino acid residues remained enigmatic. Here, we present a technological advancement to identify in situ sulfenylated cysteines directly by means of the transgenic Yap1 probe. In Arabidopsis thaliana cells, after an initial affinity purification and a tryptic digestion, we further enriched the mixed disulfide-linked peptides with an antibody targeting the YAP1C-derived peptide (C598SEIWDR) that entails the redox-active cysteine. Subsequent mass spectrometry analysis with pLink 2 identified 1,745 YAP1C cross-linked peptides, indicating sulfenylated cysteines in over 1,000 proteins. Approximately 55% of these YAP1C-linked cysteines had previously been reported as redox-sensitive cysteines (S-sulfenylation, S-nitrosylation, and reversibly oxidized cysteines). The presented methodology provides a noninvasive approach to identify sulfenylated cysteines in any species that can be genetically modified.


2014 ◽  
Vol 9 (5) ◽  
pp. 1131-1145 ◽  
Author(s):  
Sarela García-Santamarina ◽  
Susanna Boronat ◽  
Alba Domènech ◽  
José Ayté ◽  
Henrik Molina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document