scholarly journals The role of phospholipase Cβ on the plasma membrane and in the cytosol: How modular domains enable novel functions

2019 ◽  
Vol 73 ◽  
pp. 100636 ◽  
Author(s):  
Suzanne Scarlata
2020 ◽  
Vol 21 (5) ◽  
pp. 330-338
Author(s):  
Luming Wu ◽  
Yuan Ding ◽  
Shiqiang Han ◽  
Yiqing Wang

Background: Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. Objective: The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. Methods: We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. Conclusion: : This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.


2021 ◽  
Vol 154 (9) ◽  
pp. 095101
Author(s):  
Katie A. Wilson ◽  
Stephen J. Fairweather ◽  
Hugo I. MacDermott-Opeskin ◽  
Lily Wang ◽  
Richard A. Morris ◽  
...  

1992 ◽  
Vol 267 (4) ◽  
pp. 2375-2379 ◽  
Author(s):  
S Lotersztajn ◽  
C Pavoine ◽  
P Deterre ◽  
J Capeau ◽  
A Mallat ◽  
...  

Biochemistry ◽  
2005 ◽  
Vol 44 (50) ◽  
pp. 16624-16632 ◽  
Author(s):  
Silvia Lecchi ◽  
Kenneth E. Allen ◽  
Juan Pablo Pardo ◽  
A. Brett Mason ◽  
Carolyn W. Slayman

2000 ◽  
Vol 275 (21) ◽  
pp. 15709-15716 ◽  
Author(s):  
Valery V. Petrov ◽  
Kristine P. Padmanabha ◽  
Robert K. Nakamoto ◽  
Kenneth E. Allen ◽  
Carolyn W. Slayman

2007 ◽  
Vol 292 (6) ◽  
pp. G1641-G1649 ◽  
Author(s):  
Zuoliang Xiao ◽  
Frank Schmitz ◽  
Victor E. Pricolo ◽  
Piero Biancani ◽  
Jose Behar

Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities. Muscle cells from GB with ChS exhibit higher Ch levels in the plasma membrane that were mostly localized in caveolae and associated with parallel increases in the expression of Cav-3 in the caveolae compared with that in GB with pigment stones (PS). The overall number of CCK-1 receptors in the plasma membrane was not different between muscle cells from GB with ChS and PS, but they were increased in the caveolae in muscle cells from GB with ChS. Treatment of muscle cells from GB with ChS with a Gαi3 protein fragment increased the total binding of CCK-1 receptors (from 8.3 to 11.2%) and muscle contraction induced by CCK-8 (from 11.2 to 17.3% shortening). However, Gαq/11 protein fragment had no such effect. Moreover, neither fragment had any effect on muscle cells from GB with PS. We conclude that the defective contraction of muscle cells with excessive Ch levels in the plasma membrane is due to an increased expression of Cav-3 that results in the sequestration of CCK-1 receptors in the caveolae, probably by inhibiting the functions of Gαi3 proteins.


Sign in / Sign up

Export Citation Format

Share Document