Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review

2020 ◽  
Vol 21 (5) ◽  
pp. 330-338
Author(s):  
Luming Wu ◽  
Yuan Ding ◽  
Shiqiang Han ◽  
Yiqing Wang

Background: Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. Objective: The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. Methods: We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. Conclusion: : This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.

2019 ◽  
Vol 20 (10) ◽  
pp. 773-780 ◽  
Author(s):  
Xiaoyan Sun ◽  
Xiaoling Ma ◽  
Xia Yang ◽  
Xuehong Zhang

Background: Exosomes are small Extracellular Vesicles (EVs) (40-100 nm) secreted by living cells and mediate the transmission of information between cells. The number and contents of exosomes are associated with diseases such as inflammatory diseases, cancer, metabolic diseases and what we are focusing in this passage-female infertility. Objective: This review focused on the role of exosomes in oocyte development, declined ovarian function, PCOS, uterine diseases, endometrial receptivity and fallopian tube dysfunction in the female. Methods: We conducted an extensive search for research articles involving relationships between exosomes and female infertility on the bibliographic database. Results: It has been reported that exosomes can act as a potential therapeutic device to carry cargoes to treat female infertility. However, the pathophysiological mechanisms of exosomes in female infertility have not been entirely elucidated. Further researches are needed to explore the etiology and provide evidence for potential clinical treatment. Conclusions: This review systematically summarized the role exosomes play in female infertility and its potential as drug delivery.


2021 ◽  
Vol 11 (9) ◽  
pp. 544-549
Author(s):  
Paulina Trojanowska ◽  
Magdalena Chrościńska-Krawczyk ◽  
Alina Trojanowska ◽  
Ewa Tywanek ◽  
Jakub Wronecki ◽  
...  

Understanding the important role of the non-specific immune response in protecting the body against the development of numerous diseases has become partially possible after the discovery of several classes of pattern recognition receptors (PRR), such as Toll-like or NOD-like receptors. A group of cytoplasmic proteins called the inflammasome, which detect PAMP and DAMP through the PRR receptors, is able to activate pro-inflammatory cytokines and trigger an acute inflammatory reaction both in the extracellular and intracellular space. Low-grade systemic and local inflammation contributes to the development and progression of various conditions, including autoimmune and metabolic diseases, such as diabetes, metabolic syndrome and atherosclerosis, which until recently were not even considered inflammatory diseases. This review will discuss the role of innate immunity in the development of type 1 and type 2 diabetes, focusing on the role of specific innate immunity receptors and insulin resistance involved in these diseases pathogenesis.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5952
Author(s):  
Bwalya A. Witika ◽  
Pedzisai A. Makoni ◽  
Larry L. Mweetwa ◽  
Pascal V. Ntemi ◽  
Melissa T. R. Chikukwa ◽  
...  

The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a “Trojan horse” for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.


2020 ◽  
Vol 2 (1) ◽  
pp. 48-53
Author(s):  
Julia Christina Gross ◽  
Sabnam Parbin

The primary role of endosomal system is endocytic trafficking – to sort out internalized macromolecules and proteins to their destined cellular localizations. Incorporation of sorted cargos into multivesicular bodies (MVBs) confers specificities and determines their fates. This central point of the endosomal trafficking separates MVBs in two directions. The MVB populations fuse either with lysosomes to initiate autophagy or with plasma membrane to release small extracellular vesicles. Factors contributing to the selection of cargo and direction of trafficking incorporate the cells’ metabolic status and stress level. In this review, we discuss the molecular cues responsible for differential cargo sorting into MVBs and trafficking directions of MVBs in the endosomal network. Keywords: Exosomes; degradative MVB; secretory MVB; physiological stress; endocytic machinery; lysosome


Author(s):  
Kirtika Madan ◽  
Mansi Madan ◽  
Swapnil Sharma ◽  
Sarvesh Paliwal

Background: Chitinases are the evolutionary conserved glycosidic enzymes that are characterized by their ability to cleave the naturally abundant polysaccharide chitin. The potential role of chitinases has been identified in the manifestation of various allergies and inflammatory diseases. In recent years, chitinases inhibitors are emerging as an alluring area of interest for the researchers and scientists and there is a dire need for the development of potential and safe chitinase antagonists for the prophylaxis and treatment of several diseases. Objective: The present review expedites the role of chitinases and their inhibitors in inflammation and related disorders. Methods: At first, an exhaustive survey of literature and various patents available related to chitinases were carried out. Useful information on chitinases and their inhibitor was gathered from the authentic scientific databases namely SCOPUS, EMBASE, PUBMED, GOOGLE SCHOLAR, MEDLINE, EMBASE, EBSCO, WEB OF SCIENCE, etc. This information was further analyzed and compiled up to prepare the framework of the review article. The search strategy was conducted by using queries with key terms “ chitin”, “chitinase”, “chitotrisidase”, “acidic mammalian chitinase”, “chitinase inhibitors”, “asthma” and “chitinases associated inflammatory disorders”, etc. The patents were searched using the key terms “chitinases and uses thereof”, “chitinase inhibitors”, “chitin-chitinase associated pathological disorders” etc. from www.google.com/patents, www.freepatentsonline.com, and www.scopus.com. Results: The present review provides a vision for apprehending human chitinases and their participation in several diseases. The patents available also signify the extended role and effectiveness of chitinase inhibitors in the prevention and treatment of various diseases viz. asthma, acute and chronic inflammatory diseases, autoimmune diseases, dental diseases, neurologic diseases, metabolic diseases, liver diseases, polycystic ovary syndrome, endometriosis, and cancer. In this regard, extensive pre-clinical and clinical investigations are required to develop some novel, potent and selective drug molecules for the treatment of various inflammatory diseases, allergies and cancers in the foreseeable future. Conclusion: In conclusion, chitinases can be used as potential biomarkers in prognosis and diagnosis of several inflammatory diseases and allergies and the design of novel chitinase inhibitors may act as key and rational scaffolds in designing some novel therapeutic agents in the treatment of variety of inflammatory diseases.


2015 ◽  
Vol 467 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Katalin Kiss ◽  
Nora Kucsma ◽  
Anna Brozik ◽  
Gabor E. Tusnady ◽  
Ptissam Bergam ◽  
...  

The intracellular localization of ATP-binding cassette, sub family B (ABCB) 6 is a matter of debate. We show that ABCB6 is internalized from the plasma membrane to multivesicular bodies and lysosomes. Molecular dissection of the ABCB6 protein reveals a role of its N-terminal domain in targeting.


2004 ◽  
Vol 287 (6) ◽  
pp. C1769-C1775 ◽  
Author(s):  
Aeisha D. Robb ◽  
Maria Ericsson ◽  
Marianne Wessling-Resnick

The physiological role of transferrin (Tf) receptor 2 (TfR2), a homolog of the well-characterized TfR1, is unclear. Mutations in TfR2 result in hemochromatosis, indicating that this receptor has a unique role in iron metabolism. We report that HepG2 cells, which endogenously express TfR2, display a biphasic pattern of Tf uptake when presented with ligand concentrations up to 2 μM. The apparently nonsaturating pathway of Tf endocytosis resembles TfR1-independent Tf uptake, a process previously characterized in some liver cell types. Exogenous expression of TfR2 but not TfR1 induces a similar biphasic pattern of Tf uptake in HeLa cells, supporting a role for TfR2 in this process. Immunoelectron microscopy reveals that while Tf, TfR1, and TfR2 are localized in the plasma membrane and tubulovesicular endosomes, TfR2 expression is associated with the additional appearance of Tf in multivesicular bodies. These combined results imply that unlike TfR1, which recycles apo-Tf back to the cell surface after the release of iron, TfR2 promotes the intracellular deposition of ligand. Tf delivered by TfR2 does not appear to be degraded, which suggests that its delivery to this organelle may be functionally relevant to the storage of iron in overloaded states.


Author(s):  
Lichao Zhang ◽  
Xiaoying Wu ◽  
Ruibing Yang ◽  
Fang Chen ◽  
Yao Liao ◽  
...  

The gastrointestinal microbiota is a multi-faceted system that is unraveling novel contributors to the development and progression of several diseases. Berberine has been used to treat obesity, diabetes mellitus, atherosclerosis, and metabolic diseases in China. There are also clinical trials regarding berberine use in cardiovascular, gastrointestinal, and endocrine diseases. Berberine elicits clinical benefits at standard doses and has low toxicity. The mechanism underlying the role of berberine in lipid‐lowering and insulin resistance is incompletely understood, but one of the possible mechanisms is related to its effect on the gastrointestinal microbiota. An extensive search in electronic databases (PubMed, Scopus, Embase, Web of Sciences, Science Direct) was used to identify the role of the gastrointestinal microbiota in the berberine treatment. The aim of this review was to summarize the pharmacologic effects of berberine on animals and humans by regulation of the gastrointestinal microbiota.


Author(s):  
Zhou Fan ◽  
Janak L. Pathak ◽  
Linhu Ge

Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Shen-Nien Wang ◽  
Sen-Te Wang ◽  
King Teh Lee

Toll-like receptors (TLRs) are not only crucial to the initiation of the immune system, but also play a key role in several human inflammatory diseases. Hepatocellular carcinoma (HCC) is among those human cancers, which arise from sites of chronic inflammation. Therefore, a number of studies have explored the potential contribution of TLRs to HCC occurrence, which is initiated by exposure to chronic hepatic inflammation of different etiologies (including ethanol, and chronic B and C viral infections). Recent epidemiological data have shown the association of obesity and HCC development. Given the fact that adipose tissues can produce a variety of inflammation-related adipokines, obesity has been characterized as a state of chronic inflammation. Adipokines are therefore considered as important mediators linking inflammation to several metabolic diseases, including cancers. More recently, many experts have also shown the bridging role of TLRs between inflammation and metabolism. Hopefully, to retrieve the potential interaction between TLRs and adipokines in carcinogenesis of HCC will shed a new light on the therapeutic alternative for HCC. In this paper, the authors first review the respective roles of TLRs and adipokines, discuss their mutual interaction in chronic inflammation, and finally anticipate further investigations of this interaction in HCC development.


Sign in / Sign up

Export Citation Format

Share Document