Property of Curvularia lunata with mycelial pellet form and its use in dye decolorization

2008 ◽  
Vol 136 ◽  
pp. S326
Author(s):  
Min Zhao ◽  
Wei Wang ◽  
Chuanping Yang
2020 ◽  
Vol 24 (7) ◽  
pp. 1203-1208
Author(s):  
Ashley B. Ben ◽  
E. Amutha ◽  
E Pushpalaksmi ◽  
Samraj J. Jenson ◽  
G. Annadurai

This study was carried out to find out the qualities of tannery effluents with the assessment of physicochemical parameters of effluent, isolation, and identification of fungi and their optimization of different parameters on dye decolorization. In the present study, various physicochemical parameters such as Color, Odor, pH, EC, TSS, TDS, BOD, COD, Chromium, Copper, Chloride, and Sodium of untreated tannery effluent wasstudied. The results of the parameters showed that the effluent was blackish with a disagreeable odor, alkaline in pH with a high organic and inorganic loads such as EC, TDS, BOD, COD, TSS, Chromium, Copper, Chloride and Sodium. The physicochemical parameters were determined as per the standards prescribed by CPCB. Four fungal species were isolated and identified by LPCB staining namely Aspergillus niger, Aspergillus flavus, Penicillium citrinum, and Curvularia lunata. To test the activity of these fungi on different dyes, experiments were carried out for the optimization of different parameters. The maximum decolorization of dye was achieved by Aspergillus niger. From this study, it was found that the maximum biotransformation of dye effluent can help to solve the pollution problem. Keywords: physicochemical parameters, fungal isolation, and identification, Aspergillus niger, 


2010 ◽  
Vol 26 (4) ◽  
pp. 239-247 ◽  
Author(s):  
Mesut Taskin ◽  
Serkan Erdal

The present study dealt with the decolorization of textile dye Reactive Black-5 by actively growing mycelium of Aspergillus niger MT-1 in molasses medium. It was found that the fungus, which was isolated from the effluent of sugar fabric-contaminated soil, was capable of decolorizing the Reactive Black-5 dye in a wide range of temperature, shaking speed and pH values. The experiments also revealed that highest dye decolorization efficiency was achieved with cheap carbon (molasses sucrose) and nitrogen (ammonium chloride) sources. Under the optimized culture conditions, the complete decolorization (100%) of 0.1 g/L dye was achieved in 60 hours. The dominant mechanism of dye removal by the fungus was found to be probably bioaccumulation. Fungal growth in small uniform pellet form was found to be better for dye bioacumulation. Molass as carbon source increased dye bioaccumulation by stimulating the mycelial growth in small uniform pellet form. The maximum bioaccumulation efficiency of fungus for dye was 91% (0.273 g bioaccumulated dye) at an initial dye concentration of 0.3 g/L in 100 hours. It was shown for the first time in the present study that the effluent of sugar fabric-contaminated soil was a good source of microorganisms, being capable of decolorizing snythetic textile dyes.


Author(s):  
Naveen Arora ◽  
Bhanu Singh ◽  
Ratna Gupta ◽  
Susheela Sridhara ◽  
Raphael Panzani

2014 ◽  
Vol 11 (6) ◽  
pp. 684-689 ◽  
Author(s):  
Jing-Yuan LIU ◽  
He-Shui YU ◽  
Bing FENG ◽  
Li-Ping KANG ◽  
Xu PANG ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 677
Author(s):  
John Onolame Unuofin

Laccase is increasingly adopted in diverse industrial and environmental applications, due to its readily accessible requirements for efficient catalytic synthesis and biotransformation of chemicals. However, it is perceived that its industrial production might incur some unfavorable overhead, which leads to expensive market products, and the corresponding negative environmental feedback, due to the use of capital-intensive and precarious chemicals. To this end, this study was designed to evaluate the performance indicators of the valorization of wheat bran by a novel Jb1b laccase and its subsequent application in waste minimization and water management, on a laboratory scale. Optimal Jb1b laccase was produced in submerged fermentation medium containing wheat bran, an agroindustrial residue, through response surface methodology (RSM) algorithm, and was applied in dye decolorization and denim bioscouring, respectively. Results showed that the resultant enzyme manifested unique biochemical properties, such as enhanced tolerance at certain physicochemical conditions, with a residual activity of at least ca. 76%. Furthermore, phenomenally high concentrations of synthetic dyes (0.2% w v−1) were decolorized over 56 h, and a 6 h mediator-supported simultaneous denim bleaching and decolorization of wash effluent was observed. The sustainability of the production and application processes were inferred from the reusability of the fermentation sludge as a potential biofertilizer, with subsequent prospects for the biostimulation and bioaugmentation of contaminated soils, whereas the decolorized water could be adopted for other uses, amongst which horticulture and forestry are typical examples. These phenomena therefore authenticate the favorable environmental feedbacks and overhead realized in this present study.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 71-71
Author(s):  
Hadley Williams ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Robert D Goodband ◽  
Joel M DeRouchey ◽  
...  

Abstract Previous research has indicated that starch gelatinization during the pelleting process is greater for Enogen® Feed corn compared to conventional yellow dent corn. Increasing starch gelatinization in the pellet increases the starch digestibility in the pig, which potentially leads to increased growth rate. Therefore, the objective of this study was to determine the effects of feeding Enogen Feed corn in meal or pellet form on finishing pig growth performance and carcass characteristics. A total of 288 pigs (53.0 ± 0.5 kg) were used with 8 pigs/pen and 9 pens/treatment in a 72-d study. Treatments were arranged in a 2×2 factorial with main effects of corn source (Enogen Feed corn or conventional yellow dent corn) and diet form (meal or pellet). Main effects of corn source and diet form as well as their interactions were tested. Pelleting parameters were established with a target conditioner temperature of 82.2°C and corn moisture of 13 to 14%. When pelleting the diets, the conditioning temperature for conventional yellow dent corn averaged 68.4°C and Enogen Feed corn averaged 67.7°C. The hot pellet temperature for conventional yellow dent corn averaged 75.1°C and 75.8°C for Enogen feed corn. For overall performance (d 0 to 72), no interactions between corn source and diet form were observed (P > 0.05). There was a tendency (P < 0.10) for slightly improved average daily gain (ADG) and gain:feed ratio (G:F) for pigs fed conventional yellow dent corn compared to those fed Enogen Feed corn. Pigs fed pelleted diets had increased (P < 0.001) ADG, G:F, and hot carcass weight compared to pigs fed meal diets. In summary, feeding pelleted diets to finishing pigs increased ADG and G:F compared to those fed meal-based diets. There were no major differences observed between corn sources or interactions between corn source and diet form on growth performance.


Sign in / Sign up

Export Citation Format

Share Document