Conservation of in vitro shoots of Rhodiola sachalinensis by slow growth and genetic stability of recovered plantlets

2008 ◽  
Vol 136 ◽  
pp. S154
Author(s):  
Liu Jian-feng ◽  
Cheng Yun-qing ◽  
Yang Jun
2011 ◽  
pp. 391-403 ◽  
Author(s):  
M. Beruto ◽  
S. Rinino ◽  
A. Bisignano ◽  
M. Fibiani

1995 ◽  
Vol 25 (7) ◽  
pp. 1103-1112 ◽  
Author(s):  
Sylvie Richard ◽  
Sylvie Gauthier ◽  
Sylvie Laliberté

The search for the occurrence of somaclonal variation of in vitro shoots and acclimatized plants of a hybrid larch (Larix × urolepis Henry) clone was performed by the analysis of eight isozyme systems. Cultures were established from short shoot buds of mature material. The effects of growth regulators in the media, subculture intervals, and periods in culture were analyzed for in vitro shoots. Variability was found in in vitro shoots but appeared to be related to a physiological response to culture conditions. Once acclimatized, most tissuecultured plants expressed the same enzymatic patterns as those of control plants (stecklings and the ortet). The variations observed for some acclimatized plants were also observed in control plants and were not related to ontogenic stage. Results from the isoenzymatic systems studied showed that hybrid larch plants regenerated from tissue culture were not significantly different from stecklings and the ortet.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


2021 ◽  
Vol 13 (12) ◽  
pp. 6743
Author(s):  
Veerala Priyanka ◽  
Rahul Kumar ◽  
Inderpreet Dhaliwal ◽  
Prashant Kaushik

Germplasm is a valuable natural resource that provides knowledge about the genetic composition of a species and is crucial for conserving plant diversity. Germplasm protection strategies not only involve rescuing plant species threatened with extinction, but also help preserve all essential plants, on which rests the survival of all organisms. The successful use of genetic resources necessitates their diligent collection, storage, analysis, documentation, and exchange. Slow growth cultures, cryopreservation, pollen and DNA banks, botanical gardens, genetic reserves, and farmers’ fields are a few germplasm conservation techniques being employed. However, the adoption of in-vitro techniques with any chance of genetic instability could lead to the destruction of the entire substance, but the improved understanding of basic regeneration biology would, in turn, undoubtedly increase the capacity to regenerate new plants, thus expanding selection possibilities. Germplasm conservation seeks to conserve endangered and vulnerable plant species worldwide for future proliferation and development; it is also the bedrock of agricultural production.


2018 ◽  
Vol 42 (4) ◽  
pp. 412-422 ◽  
Author(s):  
Iwona JEDRZEJCZYK ◽  
Maria MOROZOWSKA ◽  
Renata NOWIŃSKA ◽  
Andrzej M. JAGODZIŃSKI

2017 ◽  
Vol 113 ◽  
pp. 186-191 ◽  
Author(s):  
M. Kumari ◽  
D. Agnihotri ◽  
C.S. Chanotiya ◽  
A.K. Mathur ◽  
R.K. Lal ◽  
...  

2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Leandro Silva Oliveira ◽  
Aloisio Xavier ◽  
Wagner Campos Otoni ◽  
José Marcello Salabert Campos ◽  
Lyderson Facio Viccini ◽  
...  

ABSTRACT Flow cytometry and microsatellite markers were used to determine a genetic fidelity of micropropagated plants from the two Eucalyptus urophylla x E. globulus clones and a Eucalyptus grandis x E. globulus clone derived from adult material. Clones were repeatedly subcultured for 25 subcultures on MS medium supplemented with BA (2.22 µM) and ANA (0.05 µM) for in vitro shoot multiplication. The elongation was performed in MS culture medium supplemented with AIB (2.46 µM) and BA(0.22 µM). The ex vitro rooting and acclimatization phases were lead at the same time. The micropropagated clones showed genetic stability by flow cytometry and microsatellite markers. The results proved that micropropagation, for purposes of rejuvenation, can be a viable technique to generate genetically stable or identical E. globulus hybrid clones.


Sign in / Sign up

Export Citation Format

Share Document