Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria

2011 ◽  
Vol 156 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Juan Borrero ◽  
Juan J. Jiménez ◽  
Loreto Gútiez ◽  
Carmen Herranz ◽  
Luis M. Cintas ◽  
...  
2014 ◽  
Vol 32 (No. 1) ◽  
pp. 54-60 ◽  
Author(s):  
C. Lamberti ◽  
F. Genovese ◽  
J.D. Coisson ◽  
G. Lobianco ◽  
L. Cocolin ◽  
...  

Nine lactic acid bacteria from artisanal-made cheeses were investigated for their ability to inhibit Listeria monocytogenes and Staphylococcus aureus. Both extracellular and surface-bound bacteriocins were recovered. While Lb. plantarum molecule was present only extracellularly, all the other strains displayed interference in both compartments. Maximum bacteriocin production was observed at the end-logarithmic phase, with the exception of Lb. plantarum (late stationary) and L. lactis subsp. cremoris (very early exponential). Lactobacillus and Lactococcus strains inhibited both List. monocytogenes and S. aureus. On the contrary, both E. faecium strains were active only on List. monocytogenes, and the enterocin A amount was enhanced under oxygen stress. All L. lactis strains (including L. lactis subsp. cremoris EL3 generally producing nisin Z) biosynthesised nisin A, while Lb. plantarum caused interference because of its very high lactic acid production. All these results suggest that artisanal-made cheeses can contain promising strains for food biosafety: these strains can be employed in toto directly in the food matrix or the purified bacteriocins can be incorporated into food packaging.  


2012 ◽  
Vol 159 (3) ◽  
pp. 368-375 ◽  
Author(s):  
Jee-Heon Jeong ◽  
Simmyung Yook ◽  
Yoonsuk Jung ◽  
Bok-Hyeon Im ◽  
Minhyung Lee ◽  
...  

2013 ◽  
Vol 26 (4) ◽  
pp. 443-452 ◽  
Author(s):  
Hee Young Chae ◽  
Minhyung Lee ◽  
Hyo Jeong Hwang ◽  
Hyun Ah Kim ◽  
Jun Goo Kang ◽  
...  

Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2663-2668 ◽  
Author(s):  
Manilduth Ramnath ◽  
Safia Arous ◽  
Anne Gravesen ◽  
John W. Hastings ◽  
Yann Héchard

Sensitivity to class IIa bacteriocins from lactic acid bacteria was recently associated with the mannose phosphotransferase system (PTS) permease, , in Listeria monocytogenes. To assess the involvement of this protein complex in class IIa bacteriocin activity, the mptACD operon, encoding , was heterologously expressed in an insensitive species, namely Lactococcus lactis, using the NICE double plasmid system. Upon induction of the cloned operon, the recombinant Lc. lactis became sensitive to leucocin A. Pediocin PA-1 and enterocin A also showed inhibitory activity against Lc. lactis cultures expressing mptACD. Furthermore, the role of the three genes of the mptACD operon was investigated. Derivative plasmids containing various combinations of these three genes were made from the parental mptACD plasmid by divergent PCR. The results showed that expression of mptC alone is sufficient to confer sensitivity to class IIa bacteriocins in Lc. lactis.


Author(s):  
Tejinder Kaur ◽  
Praveen P. Balgir ◽  
Baljinder Kaur

Abstract Background Lactic acid bacteria (LAB) are a diverse group of Gram-positive bacteria, which are widely distributed in various diverse natural habitats. These are used in a variety of industrial food fermentations and carry numerous traits with utmost relevance to the food industry. Genetic engineering has emerged as an effective means to improve and enhance the potential of commercially important bacterial strains. However, the biosafety of recombinant systems is an important concern during the implementation of such technologies on an industrial scale. In order to overcome this issue, cloning and expression systems have been developed preferably from fully characterized and annotated LAB plasmids encoding genes with known functions. Results The developed shuttle vector pPBT-GFP contains two theta-type replicons with a copy number of 4.4 and 2.8 in Pediococcus acidilactici MTCC 5101 and Lactobacillus brevis MTCC 1750, respectively. Antimicrobial “pediocin” produced by P. acidilactici MTCC 5101 and green fluorescent protein (GFP) of Aequorea victoria were successfully expressed as selectable markers. Heterologous bile salt hydrolase (BSH) from Lactobacillus fermentum NCDO 394 has been efficiently expressed in the host strains showing high specific activity of 126.12 ± 10.62 in P. acidilactici MTCC 5101 and 95.43 ± 4.26 in the case of L. brevis MTCC 1750, towards glycine-conjugated bile salts preferably as compared to taurine-conjugated salts. Conclusion The present article details the development of a LAB/LAB shuttle expression vector pPBT-GFP, capable of replication in LAB hosts, P. acidilactici MTCC 5101, and L. brevis MTCC 1750. Pediocin and GFP have been used as selectable markers with the efficient production of heterologous extracellular bile salt hydrolase. Thus, the constructed vector pPBT-GFP, with its ability to replicate in multiple hosts, low copy number, and stability in host cells, may serve as an ideal tool for improving LAB strains of commercial value using genetic engineering.


1998 ◽  
Vol 64 (9) ◽  
pp. 3275-3281 ◽  
Author(s):  
Vincent G. H. Eijsink ◽  
Marianne Skeie ◽  
P. Hans Middelhoven ◽  
May Bente Brurberg ◽  
Ingolf F. Nes

ABSTRACT Four class IIa bacteriocins (pediocin PA-1, enterocin A, sakacin P, and curvacin A) were purified to homogeneity and tested for activity toward a variety of indicator strains. Pediocin PA-1 and enterocin A inhibited more strains and had generally lower MICs than sakacin P and curvacin A. The antagonistic activity of pediocin-PA1 and enterocin A was much more sensitive to reduction of disulfide bonds than the antagonistic activity of sakacin P and curvacin A, suggesting that an extra disulfide bond that is present in the former two may contribute to their high levels of activity. The food pathogen Listeria monocytogenes was among the most sensitive indicator strains for all four bacteriocins. Enterocin A was most effective in inhibitingListeria, having MICs in the range of 0.1 to 1 ng/ml. Sakacin P had the interesting property of being very active towardListeria but not having concomitant high levels of activity toward lactic acid bacteria. Strains producing class IIa bacteriocins displayed various degrees of resistance toward noncognate class IIa bacteriocins; for the sakacin P producer, it was shown that this resistance is correlated with the expression of immunity genes. It is hypothesized that variation in the presence and/or expression of such immunity genes accounts in part for the remarkably large variation in bacteriocin sensitivity displayed by lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document