Complete genome of Streptomyces hygroscopicus subsp. limoneus KCTC 1717 (=KCCM 11405), a soil bacterium producing validamycin and diverse secondary metabolites

2016 ◽  
Vol 219 ◽  
pp. 1-2 ◽  
Author(s):  
Sang-Heon Lee ◽  
Hanna Choe ◽  
Kyung Sook Bae ◽  
Doo-Sang Park ◽  
Arshan Nasir ◽  
...  
2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Thao D. Tran ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
...  

ABSTRACT Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro. We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Ameesha R. Shetty ◽  
Vidya de Gannes ◽  
Chioma C. Obi ◽  
Susan Lucas ◽  
Alla Lapidus ◽  
...  

2017 ◽  
Vol 5 (48) ◽  
Author(s):  
Pingping Sun ◽  
Jianchao Cui ◽  
Xiaohui Jia ◽  
Wenhui Wang

ABSTRACT Bacillus velezensis L-1 is an effective biocontrol agent against pear diseases. Here, we report the complete genome sequence of B. velezensis L-1 in which clusters related to the biosynthesis of secondary metabolites were predicted. This genome provides insights into the possible biocontrol mechanisms and furthers application of this specific bacterium.


2021 ◽  
Vol 10 (22) ◽  
Author(s):  
Charlotte Beck ◽  
Tetiana Gren ◽  
Tue S. Jørgensen ◽  
Ignacio González ◽  
Fernando Román-Hurtado ◽  
...  

Here, we report the sequencing, assembly, and annotation of the genome of Streptomyces sp. strain CA-256286. The genome consists of a linear 7,726,360-nucleotide chromosome and a linear 466,817-nucleotide putative plasmid. This strain is predicted to produce a range of novel secondary metabolites.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Jennifer R. Klaus ◽  
Charlotte Majerczyk ◽  
Stephanie Moon ◽  
Natalie A. Eppler ◽  
Sierra Smith ◽  
...  

ABSTRACT The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 (“hmqL”). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensis. IMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa. Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis. This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.


Sign in / Sign up

Export Citation Format

Share Document