SnRK1 beta1 subunit protein interactors

2018 ◽  
Vol 280 ◽  
pp. S84
Author(s):  
Joana Ribeiro ◽  
Marco Simoes ◽  
Claudia Lopes ◽  
Catia Costa ◽  
Elena Baena Gonzalez ◽  
...  
2021 ◽  
Vol 27 (S1) ◽  
pp. 280-282
Author(s):  
Juan Sanchez ◽  
Daniel Parrell ◽  
Alba Gonzalez-Rivera ◽  
Nicoleta Ploscariu ◽  
Katrina Forest ◽  
...  

1998 ◽  
Vol 116 (2) ◽  
pp. 695-702 ◽  
Author(s):  
Timothy P. Getzoff ◽  
Genhai Zhu ◽  
Hans J. Bohnert ◽  
Richard G. Jensen

1997 ◽  
Vol 325 (3) ◽  
pp. 793-800 ◽  
Author(s):  
Dean C. NG ◽  
Richard C. CARLSEN ◽  
Donal A. WALSH

Neural influences on the co-ordination of expression of the multiple subunits of skeletal muscle phosphorylase kinase and their assembly to form the holoenzyme complex, α4β4γ4δ4, have been examined during denervation and re-innervation of adult skeletal muscle and during neonatal muscle development. Denervation of the tibialis anterior and extensor digitorum longus muscles of the rat hindlimb was associated with a rapid decline in the mRNA for the γ subunit, and an abrupt decrease in γ-subunit protein. The levels of the α- and β-subunit proteins in the denervated muscles also declined rapidly, their time course of reduction being similar to that for the γ-subunit protein, but they did not decrease to the same extent. In contrast with the rapid decline in γ-subunit mRNA upon denervation, α- and β-subunit mRNAs stayed at control innervated levels for approx. 8–10 days, but then decreased rapidly. Their decline coincided very closely with the onset of re-innervation. Re-innervation of the denervated muscles, which occurs rapidly and uniformly after the sciatic nerve crush injury, produced an eventual slow and prolonged recovery of the mRNA for all three subunits and parallel increases in each of the subunit proteins. A similar co-ordinated increase of both subunit mRNA and subunit proteins of the phosphorylase kinase holoenzyme was observed during neonatal muscle development, during the period when the muscles were attaining their adult pattern of motor activity. The phosphorylase kinase holoenzyme remains in a non-activated form during all of these physiological changes, as is compatible with the presence of the full complement of the regulatory subunits. These data are consistent with a model whereby the transcriptional and translational expression of phosphorylase kinase γ subunit occurs only with concomitant expression of the α and β subunits. This would ensure that free and unregulated, activated γ subunit alone, which would give rise to unregulated glycogenolysis, is not produced. The data also suggest that control of phosphorylase kinase subunit expression and the formation of the holoenzyme in skeletal muscle is provided by the motor nerve, probably through imposed levels or patterns of muscle activity.


2011 ◽  
Vol 59 (6) ◽  
pp. 896-905 ◽  
Author(s):  
Alessandro Barbon ◽  
Luca Caracciolo ◽  
Cesare Orlandi ◽  
Laura Musazzi ◽  
Alessandra Mallei ◽  
...  

2005 ◽  
Vol 94 (6) ◽  
pp. 4491-4501 ◽  
Author(s):  
Fan Jia ◽  
Leonardo Pignataro ◽  
Claude M. Schofield ◽  
Minerva Yue ◽  
Neil L. Harrison ◽  
...  

Whole cell patch-clamp recordings were obtained from thalamic ventrobasal (VB) and reticular (RTN) neurons in mouse brain slices. A bicuculline-sensitive tonic current was observed in VB, but not in RTN, neurons; this current was increased by the GABAA receptor agonist 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridine-3-ol (THIP; 0.1 μM) and decreased by Zn2+ (50 μM) but was unaffected by zolpidem (0.3 μM) or midazolam (0.2 μM). The pharmacological profile of the tonic current is consistent with its generation by activation of GABAA receptors that do not contain the α1 or γ2 subunits. GABAA receptors expressed in HEK 293 cells that contained α4β2δ subunits showed higher sensitivity to THIP (gaboxadol) and GABA than did receptors made up from α1β2δ, α4β2γ2s, or α1β2γ2s subunits. Western blot analysis revealed that there is little, if any, α3 or α5 subunit protein in VB. In addition, co-immunoprecipitation studies showed that antibodies to the δ subunit could precipitate α4, but not α1 subunit protein. Confocal microscopy of thalamic neurons grown in culture confirmed that α4 and δ subunits are extensively co-localized with one another and are found predominantly, but not exclusively, at extrasynaptic sites. We conclude that thalamic VB neurons express extrasynaptic GABAA receptors that are highly sensitive to GABA and THIP and that these receptors are most likely made up of α4β2δ subunits. In view of the critical role of thalamic neurons in the generation of oscillatory activity associated with sleep, these receptors may represent a principal site of action for the novel hypnotic agent gaboxadol.


Sign in / Sign up

Export Citation Format

Share Document