Preferential oxidation of carbon monoxide over Pt–FeO /CeO2 synthesized by two-nozzle flame spray pyrolysis

2015 ◽  
Vol 329 ◽  
pp. 248-261 ◽  
Author(s):  
Jochen A.H. Dreyer ◽  
Henrike K. Grossmann ◽  
Jinfan Chen ◽  
Tim Grieb ◽  
Bill B. Gong ◽  
...  
Author(s):  
Emmanuel Lim ◽  
Teeravit Visutipol ◽  
Wen Peng ◽  
Nico Hotz

In the present study, a catalyst produced by flame spray pyrolysis (FSP) was evaluated for its ability to produce hydrogen-rich gas mixtures. Catalyst particles fabricated by a novel flame spray pyrolysis method resulting in a highly active catalyst with high surface-to-volume ratio were compared to a commercially produced catalyst (BASF F3-01). Both catalysts consisted of CuO/ZnO/Al2O3 of identical composition (CuO 40wt%, ZnO 40wt%, Al2O3 20wt%). Reaction temperatures between 220 and 295 °C, methanol-water inlet flow rates between 2 and 50 μl/min, and reactor masses between 25 and 100 mg were tested for their effect on methanol conversion and the production of undesired carbon monoxide. 100% methanol conversion can be easily achieved within the operational conditions mentioned for this flame-made catalyst — at reactor temperatures of 255 °C (achievable with non-concentrating solar collectors) more than 80% methanol conversion can be reached for methanol-water inlet flow rates as high as 10 μl/min. The FSP catalyst demonstrates similar catalytic abilities as the BASF, produces a consistent gas composition and produces lower overall CO production. Furthermore, the FSP catalyst demonstrates a better suitability to fuel cell use through its higher resistance to degradation and smaller production of carbon monoxide over long-term use. In the present study, the merits of using flame spray pyrolysis to produce CuO/ZnO/Al2O3 methanol steam reforming catalysts are examined, and directly compared to catalysts that are commercially produced in bulk pellet form, and then ground and sieved. The comparison is performed from several different perspectives: catalytic activity and CO production at various temperatures and fuel inlet flow rates; surface and structure characteristics are determined via scanning electron and transmission electron microscopy; surface area characteristics are determined via BET tests.


2013 ◽  
Author(s):  
Nico Hotz

In the present study, a catalyst produced by flame spray pyrolysis (FSP) was evaluated for its ability to produce hydrogen-rich gas mixtures. Catalyst particles fabricated by a novel flame spray pyrolysis method resulting in a highly active catalyst with high surface-to-volume ratio were compared to a commercially produced catalyst (BASF F3-01). Both catalysts consisted of CuO/ZnO/Al2O3 of identical composition (CuO 40wt%, ZnO 40wt%, Al2O3 20wt%). Reaction temperatures between 220 and 295 °C, methanol-water inlet flow rates between 2 and 50 μl/min, and reactor masses between 25 and 100 mg were tested for their effect on methanol conversion and the production of undesired carbon monoxide. 100% methanol conversion can be easily achieved within the operational conditions mentioned for this flame-made catalyst — at reactor temperatures of 255 °C (achievable with non-concentrating solar collectors) more than 80% methanol conversion can be reached for methanol-water inlet flow rates as high as 10 μl/min. The FSP catalyst demonstrates similar catalytic abilities as the BASF, produces a consistent gas composition and produces lower overall CO production. Furthermore, the FSP catalyst demonstrates a better suitability to fuel cell use through its higher resistance to degradation and smaller production of carbon monoxide over long-term use. In the present study, the merits of using flame spray pyrolysis to produce CuO/ZnO/Al2O3 methanol steam reforming catalysts are examined, and directly compared to catalysts that are commercially produced in bulk pellet form, and then ground and sieved. The comparison is performed from several different perspectives: catalytic activity and CO production at various temperatures and fuel inlet flow rates; surface and structure characteristics are determined via scanning electron and transmission electron microscopy; surface area characteristics are determined via Brunauer-Emmett-Teller (BET) tests.


2021 ◽  
pp. 111426
Author(s):  
Naphaphan Kunthakudee ◽  
Pongtanawat Khemthong ◽  
Chuleeporn Luadthong ◽  
Joongjai Panpranot ◽  
Okorn Mekasuwandumrong ◽  
...  

Langmuir ◽  
2021 ◽  
Author(s):  
Abhijit H. Phakatkar ◽  
Mahmoud Tamadoni Saray ◽  
Md Golam Rasul ◽  
Lioudmila V. Sorokina ◽  
Timothy G. Ritter ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 817
Author(s):  
Maria Solakidou ◽  
Yiannis Georgiou ◽  
Yiannis Deligiannakis

Noble metal-TiO2 nanohybrids, NM0-TiO2, (NM0 = Pt0, Pd0, Au0, Ag0) have been engineered by One-Nozzle Flame Spray Pyrolysis (ON-FSP) and Double-Nozzle Flame Spray Pyrolysis (DN-FSP), by controlling the method of noble metal deposition to the TiO2 matrix. A comparative screening of the two FSP methods was realized, using the NM0-TiO2 photocatalysts for H2 production from H2O/methanol. The results show that the DN-FSP process allows engineering of more efficient NM0-TiO2 nanophotocatalysts. This is attributed to the better surface-dispersion and narrower size-distribution of the noble metal onto the TiO2 matrix. In addition, DN-FSP process promoted the formation of intraband states in NM0-TiO2, lowering the band-gap of the nanophotocatalysts. Thus, the present study demonstrates that DN-FSP process is a highly efficient technology for fine engineering of photocatalysts, which adds up to the inherent scalability of Flame Spray Pyrolysis towards industrial-scale production of nanophotocatalysts.


Author(s):  
Thulani M. Nyathi ◽  
Mohamed I. Fadlalla ◽  
Nico Fischer ◽  
Andrew P.E. York ◽  
Ezra J. Olivier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document