Electrophoretic deposition of hydroxyapatite–CaSiO3–chitosan composite coatings

2009 ◽  
Vol 330 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Xin Pang ◽  
Travis Casagrande ◽  
Igor Zhitomirsky
2017 ◽  
Vol 62 (1) ◽  
pp. 405-410 ◽  
Author(s):  
P. Ledwig ◽  
M. Kot ◽  
T. Moskalewicz ◽  
B. Dubiel

Abstract This paper presents the results of the optimization of electrophoretic deposition parameters for manufacturing of nc-TiO2/chitosan composite coatings on X2CrNiMo17-12-2 steel as well as characterization of their microstructure, electrochemical properties and adhesion to the substrate. The parameters of the deposition, such as composition, pH and zeta potential of suspensions as well as voltage and process time were investigated. The microstructure of the coatings was characterized using scanning and transmission electron microscopy. Obtained coatings were crack-free and uniform. The adhesion strength to the substrate was measured by scratch-test method. The deposited coatings improve corrosion resistance of steel, what was confirmed by the results of the potentiodynamic polarization test in Ringer’s solution.


Author(s):  
Muhammad Wahaj ◽  
Usama Saleem ◽  
Farasat Iqbal ◽  
Muhammad Yasir ◽  
Abdul Wadood ◽  
...  

In this study, silver-strontium doped hydroxyapatite (AgSr-HA)/chitosan composite coatings were deposited on stainless steel (SS) substrate via electrophoretic deposition (EPD) technique. The EPD parameters such as the concentration of Ag Sr-HA particles in the suspension, applied voltage and deposition time were optimized on by the Taguchi Design of Experiment (DoE) approach. DOE approach elucidated that the “best” coating was obtained at; the deposition voltage of 20V, deposition time of 7 minutes, and at 5 g/L of Ag Sr-HA particles in the suspension. The optimum coatings were characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. SEM images confirmed the deposition of chitosan/Ag Sr-HA on the SS substrate. The wettability studies indicated the hydrophilic nature of the chitosan/Ag Sr-HA coatings, which confirmed the suitability of the developed coatings for orthopedic applications. The average surface roughness of the chitosan/Ag Sr-HA coatings was in a suitable range for the attachment of bone marrow stromal cells. Chitosan/Ag Sr-HA coatings showed a potent antibacterial effect against the Gram-Positive and Gram-negative bacteria.


2014 ◽  
Vol 6 (11) ◽  
pp. 8796-8806 ◽  
Author(s):  
Fatemehsadat Pishbin ◽  
Viviana Mouriño ◽  
Sabrina Flor ◽  
Stefan Kreppel ◽  
Vehid Salih ◽  
...  

RSC Advances ◽  
2013 ◽  
Vol 3 (28) ◽  
pp. 11247 ◽  
Author(s):  
L. Cordero-Arias ◽  
S. Cabanas-Polo ◽  
Haoxiang Gao ◽  
J. Gilabert ◽  
E. Sanchez ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 1552-1557
Author(s):  
C. Ramskogler ◽  
L. Cordero ◽  
Fernando Warchomicka ◽  
A.R. Boccaccini ◽  
Christof Sommitsch

An area of major interest in biomedical engineering is currently the development of improved materials for medical implants. Research efforts are being focused on the investigation of surface modification methods for metallic prostheses due to the fundamental bioinert character of these materials and the possible ion release from their surfaces, which could potentially induce the interfacial loosening of devices after implantation. Electron beam (EB) structuring is a novel technique to control the surface topography in metals. Electrophoretic deposition (EPD) offers the feasibility to deposit at room temperature a variety of materials on conductive substrates from colloidal suspensions under electric fields. In this work single layers of chitosan composite coatings containing titania nanoparticles (n-TiO2) were deposit by EPD on electron beam (EB) structured Ti6Al4V titanium alloy. Surface structures were designed following different criteria in order to develop specific topography on the Ti6Al4V substrate. n-TiO2 particles were used as a model particle in order to demonstrate the versatility of the proposed technique for achieving homogenous chitosan based coatings on structured surfaces. A linear relation between EPD time and deposition yield on different patterned Ti6Al4V surfaces was determined under constant voltage conditions, obtaining homogeneous EPD coatings which replicate the 3D structure (pattern) of the substrate surface. The present results show that a combination of both techniques can be considered a promising surface modification approach for metallic implants, which should lead to improved interaction between the implant surface and the biological environment for orthopaedic applications.


2010 ◽  
Vol 434-435 ◽  
pp. 502-505
Author(s):  
Ying Hua Li ◽  
Li Yun Cao ◽  
Jian Feng Huang ◽  
Xie Rong Zeng

Hydroxyapatite/Chitosan (HAp/CS) bio-coatings were prepared on the surface of carbon/ carbon (C/C) composites by hydrothermal electrophoretic deposition, using sonochemical process resulted HAp nanoparticles, isopropyl alcohol and chitosan as raw materials. The influences of hydro- thermal conditions and deposition voltage on the microstructures and morphologies of the as-prepared coatings were investigated. It was shown that homogenous and dense HAp/CS coatings on C/C composites are obtained by hydrothermal electrophoretic deposition. With the increase of deposition voltage, density and homogeneity of the as-prepared HAp/CS composite coatings are well improved. Due to the growth of HAp nanoparticles in the hydrothermal condition, the subsequent heat treatment of the HAp/CS coatings is not needed.


2013 ◽  
Vol 233 ◽  
pp. 49-56 ◽  
Author(s):  
Qiang Chen ◽  
Luis Cordero-Arias ◽  
Judith A. Roether ◽  
Sandra Cabanas-Polo ◽  
Sannakaisa Virtanen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document