Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor

2017 ◽  
Vol 500 ◽  
pp. 79-87 ◽  
Author(s):  
Xiang Cai ◽  
Lining Yang ◽  
Zhiwei Wang ◽  
Meijia Zhang ◽  
Liguo Shen ◽  
...  
Chemosphere ◽  
2018 ◽  
Vol 210 ◽  
pp. 769-778 ◽  
Author(s):  
Jiaheng Teng ◽  
Liguo Shen ◽  
Yiming He ◽  
Bao-Qiang Liao ◽  
Guosheng Wu ◽  
...  

2008 ◽  
Vol 57 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Xianghua Wen ◽  
Pengzhe Sui ◽  
Xia Huang

In this study, ultrasound was applied to control membrane fouling development online in an anaerobic membrane bioreactor (AMBR). Experimental results showed that membrane fouling could be controlled effectively by ultrasound although membrane damage may occur under some operational conditions. Based upon the observation on the damaged membrane surface via SEM, two mechanisms causing membrane damage by exerting ultrasound are inferred as micro particle collide on the membrane surface and chemical interaction between membrane materials and hydroxyl radicals produced by acoustic cavitations. Not only membrane damage but also membrane fouling control and membrane fouling cleaning were resulted from these mechanisms. Properly selecting ultrasonic intensity and working time, and keeping a certain thickness of cake layer on membrane surface could be effective ways to protect membrane against damage.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2867 ◽  
Author(s):  
Petros K. Gkotsis ◽  
Anastasios I. Zouboulis

Biomass characteristics are regarded as particularly influential for fouling in Membrane Bio-Reactors (MBRs). They primarily include the Mixed Liquor Suspended Solids (MLSS), the colloids and the Extracellular Polymeric Substances (EPS). Among them, the soluble part of EPS, which is also known as Soluble Microbial Products (SMP), is the most significant foulant, i.e., it is principally responsible for membrane fouling and affects all fundamental fouling indices, such as the Trans-Membrane Pressure (TMP) and the membrane resistance and permeability. Recent research in the field of MBRs, tends to consider the carbohydrate fraction of SMP (SMPc) the most important characteristic for fouling, mainly due to the hydrophilic and gelling properties, which are exhibited by polysaccharides and allow them to be easily attached on the membrane surface. Other wastewater and biomass characteristics, which affect indirectly membrane fouling, include temperature, viscosity, dissolved oxygen (DO), foaming, hydrophobicity and surface charge. The main methods employed for the characterization and assessment of biomass quality, in terms of filterability and fouling potential, can be divided into direct (such as FDT, SFI, TTF100, MFI, DFCM) or indirect (such as CST, TOC, PSA, RH) methods, and they are shortly presented in this review.


2011 ◽  
Vol 63 (7) ◽  
pp. 1519-1523 ◽  
Author(s):  
Peng Bai ◽  
Jin Wang ◽  
Guang-Hao Chen

This paper reports on a pilot trial of a novel MBR developed with coarse-pore membrane module by the authors. The plant was operated for 370 days with up to 7 m3/d raw saline sewage after 3-mm screening. The plant performed successfully without membrane fouling for 270 days except an accidental power source failure for 30 h, during which membrane was fouled under no aeration and mixing condition. EPS increases in both the reactor and the bio-cake on the membrane surface explained this fouling. The average TSS, COD and TKN removal efficiency were 92, 90, and 93%, respectively, under a high effective permeate flux of 4.8 m/d and a low air-to-water ratio of 15.


2016 ◽  
Vol 216 ◽  
pp. 817-823 ◽  
Author(s):  
Meijia Zhang ◽  
Jianrong Chen ◽  
Yuanjun Ma ◽  
Liguo Shen ◽  
Yiming He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document