Self-assembly of MoS2 nanosheet adhered on Fe-MOF heterocrystals for peroxymonosulfate activation via interfacial interaction

Author(s):  
Liang Zhang ◽  
Bofan Zhang ◽  
Li Wang ◽  
Rile Ge ◽  
Wenhui Zhou ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36969-36978 ◽  
Author(s):  
L. Guadagno ◽  
M. Raimondo ◽  
L. Vertuccio ◽  
M. Mauro ◽  
G. Guerra ◽  
...  

Graphitic layers are designed as a self-assembly structure using edge-carboxylated layers approach. The functionalization facilitate the interfacial interaction between polymer and carbon layers enhancing electrical and mechanical performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2158
Author(s):  
Xiaobing Han ◽  
Hao Kong ◽  
Tao Chen ◽  
Jie Gao ◽  
Yuan Zhao ◽  
...  

Interfacial interaction is one of the most important factors in the construction of high-performance graphene-based elastomer composites. In this paper, graphene/poly (styrene-b-isoprene-b-styrene) (SIS) composites were prepared with solution mixing followed by an evaporation-induced self-assembly process. Various techniques such as scanning electron microscopy, UV-vis absorption spectra, tensile testing, Shore A hardness, surface resistance, thermal conductivity, and thermogravimetric analysis were conducted to characterize the microstructure and properties of the obtained composites. The results showed that the π–π stacking interfacial interaction between phenyl groups of SIS and graphene play an important role in the properties’ improvement, and the effect of interfacial interaction on the properties was revealed.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Sign in / Sign up

Export Citation Format

Share Document