Taming Structure and Modulating Carbon Dioxide (CO2) Adsorption Isosteric Heat of Nickel-based Metal Organic Framework (MOF-74(Ni)) for Remarkable CO2 Capture

Author(s):  
Lei Lei ◽  
Yan Cheng ◽  
Changwei Chen ◽  
Mohammadreza Kosari ◽  
Zeyu Jiang ◽  
...  
Author(s):  
Le Minh Cam ◽  
Le Van Khu ◽  
Nguyen Thi Thu Ha ◽  
Nguyen Ngoc Ha

Cobalt dopping Fe-MIL-88B were successfully synthesized -in solvothermal procedure using DMF as solvent and with/without NaOH. The samples were characterized using SEM, BET and TGA techniques. The partly substitution of Fe by Co does not change the octahedral shape of their parent Fe-MIL-88B. Crystallizations conducted in NaOH medium, however, results in rod like with 2-end octahedral shape crystals. The BET specific surface area is 139cm2/g. The TGA data indicated that the presence of Co resulted in an increase in thermal stability of synthesized samples compared to parent Fe-MIL-88B. The CO2 adsorption isotherms in Fe-MIL-88B-Co samples were measured volumetrically at five temperatures:278K, 288K, 298K, 308K, 318K. The obtained results showed that Fe-MIL-88B-Co is a potential adsorbent with a maximum adsortption capacity of 1.2312 mmol/g (at T= 278K). The sample synthesized in alkali medium exhibited a better adsorbent for CO2 storage. Keywords MIL, adsorption, CO2 References [1] S. Chu, Carbon Capture and Sequestration, Science325(2009)1599 [2] R.S. Haszeldine,Carbon Capture and Storage: How Green Can Black Be?, Science325(2009) 1647[3] D.M. D’Alessandro, B. Smit, J.R. Long,Carbon Dioxide Capture: Prospects for New Materials, Angewandte Chemie International Edition. 49(2010) 6058[4] S. Bai, J. Liu, J. Gao, Q. Yang Can Li,Hydrolysis controlled synthesis of amine-functionalized hollow ethane–silica nanospheres as adsorbents for CO2 capture, Microporous and Mesoporous Materials151(2012) 474[5] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R.[6] Long,Carbon Dioxide Capture in Metal–Organic Frameworks, Chemical Reviews, 112(2012) 724[7] J.D. Carruthers, M.A. Petruska, E.A. Sturm, S.M. Wilson,Molecular sieve carbons for CO2 capture, Microporous and Mesoporous Materials,154 (2012) 62[8] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni,Amine-modified mesocellular silica foams for CO2 capture, Chemical Engineering Journal,168 (2011), 918[9] A. Zukal, C.O. Arean, M.R. Delgado, P. Nachtigall, A. Pulido, J. Mayerova, J. Cˇejka,Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite,Microporous and Mesoporous Materials 146 (2011) 97[10] S. Keskin, T.M. van Heest, D.S. Sholl, Can Metal–Organic Framework Materials Play a Useful Role in Large‐Scale Carbon Dioxide Separations?, ChemSusChem3 (2010) 879[11] T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc), Journal of the American Chemical Society134 (2012) 7056[12] X. Yan, S. Komarneni, Z. Zhang, Z. Yan(2014),Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment, Microporous and Mesoporous Materials183 (2014) 69–73[13] Gia-Thanh Vuong, Minh-Hao Pham and Trong-On Do*, Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B†, CrystEngComm, DOI: 10.1039/c3ce41453a[14] Lê Văn Khu, Nguyễn Quốc Anh, Nguyễn Ngọc Hà, Lê Minh Cầm, Tổng hợp, đặc trưng và khảo sát khả năng hấp phụ CO2 của Fe-MIL-88B, Tạp chí xúc tác và hấp phụ 4 (1) (2015) 52[15] K. S. W. Sing, D. H. Everett, R. A. W. Hau et.al, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry 57 (1985) 603


2020 ◽  
Vol 49 (17) ◽  
pp. 5618-5624
Author(s):  
Rui Zhang ◽  
Ju-Hua Huang ◽  
De-Xian Meng ◽  
Fa-Yuan Ge ◽  
Li-Fei Wang ◽  
...  

Three MOF isomers including framework-catenation and framework-topological isomers were synthesized for adsorbing carbon dioxide with high selectivity.


2019 ◽  
Vol 58 (23) ◽  
pp. 16040-16046 ◽  
Author(s):  
Wenqing Wang ◽  
Yaping Wen ◽  
Jian Su ◽  
Haibo Ma ◽  
Hai-Ying Wang ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Ayushi Singh ◽  
Sibnath Kayal

Background: In today’s world, rising temperature due to global warming is caused by higher concentration of carbon dioxide (CO2) emissions in the atmosphere. Metal-Organic Framework (MOF) materials have the potential to be used in carbon dioxide capture and utilization technology. Objective: The purpose of this work is to prepare metal-organic framework materials by a benign synthesis method using water as the solvent, followed by the characterization and property evaluation for CO2 adsorption study. Methods: MIL-101-Cr metal-organic framework and its derivatives with alkali ion dopants were prepared by benign hydrothermal synthesis route, which were characterized by powder X-ray diffraction method. The adsorption isotherms of CO2 for MIL-101-Cr and its derivatives were studied to comprehend the influence of alkali dopants on CO2 sorption behaviour. The equilibrium uptakes of CO2 were further evaluated by fitting the isotherms with Langmuir, Toth and Dubinin – Astakohv adsorption models to determine the adsorption parameters. Results: The crystalline structural integrity of MIL-101-Cr is not affected by doping with alkali ions. The isosteric heat of CO2 adsorption is diminished with an increase in alkali dopant size, while the induced surface structural heterogeneity increases with increasing alkali dopant size. Conclusion: The equilibrium and thermodynamic parameters calculated from this study are useful for applications in carbon dioxide capture and utilization technology.


2018 ◽  
Vol 10 (3) ◽  
pp. 2480-2489 ◽  
Author(s):  
Yan-Ling Qiu ◽  
He-Xiang Zhong ◽  
Tao-Tao Zhang ◽  
Wen-Bin Xu ◽  
Pan-Pan Su ◽  
...  

2018 ◽  
Vol 42 (24) ◽  
pp. 19764-19770 ◽  
Author(s):  
Zhaodong Niu ◽  
Qingqing Guan ◽  
Yuzhen Shi ◽  
Yuan Chen ◽  
Qiuling Chen ◽  
...  

The adsorption mechanism of carbon dioxide (CO2) on Li/UiO-66 was studied by an in situ DRIFTS study.


Author(s):  
Xiao-Li Yang ◽  
Yang-Tian Yan ◽  
Wen-Juan Wang ◽  
Ze-Ze Hao ◽  
Wen-Yan Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid T. Qazvini ◽  
Ravichandar Babarao ◽  
Shane G. Telfer

AbstractEfficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.


Sign in / Sign up

Export Citation Format

Share Document