Exergy and economic analysis of using the flue gas injection system of a combined cycle power plant into the Heller Tower to improve the power plant performance

2019 ◽  
Vol 233 ◽  
pp. 695-710 ◽  
Author(s):  
A. Jahangiri ◽  
M.M. Yahyaabadi ◽  
A. Sharif
2010 ◽  
Vol 44-47 ◽  
pp. 1240-1245 ◽  
Author(s):  
Hong Zeng ◽  
Xiao Ling Zhao ◽  
Jun Dong Zhang

For combined-cycle power plant performance analysis, a ship power plant mathematical model is developed, including diesel engine, controllable pitch propeller, exhaust gas boiler, turbine generator and shaft generator models. The simulation performance characteristic curves of diesel engine under various loads are given. Comparison of simulation results and experimental data shows the model can well predict the performance of diesel engine in various operating conditions. The specific fuel oil consumption contours of combined-cycle power plant and the relations between engine operating conditions and steam cycle parameters are given. The influence of diesel engine operating conditions to the overall performance of combined-cycle power plant is discussed.


2021 ◽  
Vol 347 ◽  
pp. 00003
Author(s):  
Rushavya Naidu ◽  
Wim Fuls

The objective of this project was to develop a model of a combined-cycle power plant in Flownex which can be solved in off-design conditions in order to compare it to plant data. The verification of this model will show that Flownex can be used to effectively and efficiently model a combined-cycle power plant. The process of development of the final Flownex model was achieved using various additional software. Initially, an analytical model was developed in Mathcad (software used for engineering calculations). Thereafter, a model was built in Virtual Plant, a thermodynamic modelling software for assessing plant performance. Finally, the Flownex model was designed. For the single, double, and triple pressure combined-cycle power plant systems, the analytical, Virtual Plant and Flownex models were compared. The results of all the models agreed closely with one another. The triple-pressure design and off-design Virtual Plant and Flownex models were also compared to plant data and it was concluded that Flownex was successful in modelling the design and offdesign conditions of a combined-cycle power plant.


Sign in / Sign up

Export Citation Format

Share Document