Strategic utilization of municipal solid waste incineration bottom ash for the synthesis of lightweight aerated alkali-activated materials

2019 ◽  
Vol 235 ◽  
pp. 603-612 ◽  
Author(s):  
Weiping Zhu ◽  
Peng Jie Teoh ◽  
Yiquan Liu ◽  
Zhitao Chen ◽  
En-Hua Yang
2020 ◽  
Vol 10 (12) ◽  
pp. 4129
Author(s):  
Àlex Maldonado-Alameda ◽  
Jessica Giro-Paloma ◽  
Anna Alfocea-Roig ◽  
Joan Formosa ◽  
Josep Maria Chimenos

The concern about the large amount of weathered bottom ash (WBA) produced in waste-to-energy plants (WtE) has caused an increased search for alternatives to reduce their environmental impact. The present study aims to provide an added value through the WBA valorization from municipal solid waste incineration (MSWI) for its use as a sole precursor for developing alkali-activated binders (AABs). Alkali-activated weathered bottom ash binders (AA-WBA) were formulated with a liquid-to-solid ratio of 1.0 and using sodium silicate (80 wt.%) and NaOH (20 wt.%) at different concentrations (2, 4, 6, and 8M) as alkali-activator solutions. AA-WBA were cured at room temperature to extend their applicability. The effect of the alkali-activator solution molarity on the final properties of the AA-WBA was evaluated. The physicochemical characterization by XRD, FTIR, and SEM evidenced the presence of the typical phases (calcium silicate hydrate and gehlenite) of C-(A)-S-H gel. Leaching concentrations of As, Cu, and Mo exceed the acceptance in landfills for inert waste, while the leaching concentration of Sb exceeds the one for non-hazardous waste. The structure of the binders depends on the alkalinity of the activator, obtaining better results using NaOH 6M in terms of microstructure and compressive strength (6.7 MPa). The present study revealed that AA-WBA for non-structural purposes can be obtained. The AA-WBA formulation contributes to the WBA valorization and development of low-carbon cements; therefore, it is an encouraged alternative to ordinary Portland cement (OPC). Considering the amounts and costs of the WBA, sodium silicate, NaOH, and water, the total cost of the developed formulations is comprised in a range between 137.6 and 153.9 €/Tn.


2021 ◽  
Vol 121 ◽  
pp. 33-41
Author(s):  
Yanjun Hu ◽  
Lingqin Zhao ◽  
Yonghao Zhu ◽  
Bennong Zhang ◽  
Guixiang Hu ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 179
Author(s):  
Jad Bawab ◽  
Jamal Khatib ◽  
Said Kenai ◽  
Mohammed Sonebi

Waste management is a vital environmental issue in the world today. Municipal solid wastes (MSWs) are discarded in huge quantities on a daily basis and need to be well controlled. Incineration is a common method for reducing the volume of these wastes, yet it produces ashes that require further assessment. Municipal solid waste incineration bottom ash (MSWI-BA) is the bulk byproduct of the incineration process and has the potential to be used in the construction sector. This paper offers a review of the use of MSWI-BA as aggregates in cementitious materials. With the growing demand of aggregates in cementitious materials, MSWI-BA is considered for use as a partial or full alternative. Although the physical and chemical properties of MSWI-BA are different than those of natural aggregates (NA) in terms of water absorption, density, and fineness, they can be treated by various methods to ensure suitable quality for construction purposes. These treatment methods are classified into thermal treatment, solidification and stabilization, and separation processes, where this review focuses on the techniques that reduce deficiencies limiting the use of MSWI-BA as aggregates in different ways. When replacing NA in cementitious materials, MSWI-BA causes a decrease in workability, density, and strength. Moreover, they cause an increase in water absorption, air porosity, and drying shrinkage. In general, the practicality of using MSWI-BA in cementitious materials is mainly influenced by its treatment method and the replacement level, and it is concluded that further research, especially on durability, is required before MSWI-BA can be efficiently used in the production of sustainable cementitious materials.


Sign in / Sign up

Export Citation Format

Share Document