Comparative BIM-based Life Cycle Assessment of Uruguayan timber and concrete-masonry single-family houses in design stage

2020 ◽  
Vol 277 ◽  
pp. 121958 ◽  
Author(s):  
B. Soust-Verdaguer ◽  
C. Llatas ◽  
L. Moya
2016 ◽  
Vol 861 ◽  
pp. 593-600 ◽  
Author(s):  
Benedek Kiss ◽  
Zsuzsa Szalay

Life Cycle Assessment (LCA) is an advantageous tool for the analysis of the overall environmental effects of a building. Most of the decisions that influence the final result of an LCA are made during the design process of the building. Therefore, LCA in early design stages is crucial, because the changes in this period of design are cheaper and more effective. However, there are many other aspects that influence the design of a building. During the design process a high number of variables have to be defined, and in each design stage a specific number of variables have to be fixed depending on various engineering considerations. In this paper we investigate the effect of decisions made in each design stage on LCA results. Within this paper the available possibilities are compared with the variant that was actually selected in each stage, and it is evaluated how environmental indicators evolve during the whole design process. The approach is demonstrated on a case study of a realized single family house.


2013 ◽  
Vol 7 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Weiqian Zhang ◽  
Shen Tan ◽  
Yizhong Lei ◽  
Shoubing Wang

2017 ◽  
Vol 1 (1) ◽  
pp. 91-108
Author(s):  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Sonia Longo

The building sector is one of the most relevant in terms of generation of wealth and occupation, but it is also responsible for significant consumption of natural resources and the generation of environmental impacts, mainly greenhouse gas emissions. In order to improve the eco profile of buildings during their life-cycle, the reduction of the use of resources and the minimization of environmental impacts have become, in the last years, some of the main objectives to achieve in the design of sustainable buildings. The application of the life-cycle thinking approach, looking at the whole life cycle of buildings, is of paramount importance for a real decarbonization and reduction of the environmental impacts of the building sector. This paper presents an application of the life-cycle assessment methodology for assessing the energy and environmental life-cycle impacts of a single-family house located in the Mediterranean area in order to identify the building components and life-cycle steps that are responsible of the higher burdens. The assessment showed that the largest impacts are located in the use stage; energy for heating is significant but not dominant, while the contribution of electricity utilized for households and other equipment resulted very relevant. High environmental impacts are also due to manufacture and transport of building materials and components.


2016 ◽  
Vol 103 ◽  
pp. 215-227 ◽  
Author(s):  
Bernardette Soust-Verdaguer ◽  
Carmen Llatas ◽  
Antonio García-Martínez

2019 ◽  
Vol 8 (5) ◽  
pp. 383 ◽  
Author(s):  
Toktam B. Tabrizi ◽  
Arianna Brambilla

Life Cycle Assessment (LCA), developed over 30 years ago, has been helpful in addressing a growing concern about the direct and indirect environmental impact of buildings over their lifetime. However, lack of reliable, available, comparable and consistent information on the life cycle environmental performance of buildings makes it very difficult for architects and engineers to apply this method in the early stages of building design when the most important decisions in relation to a building’s environmental impact are made. The LCA quantification method with need of employing complex tools and an enormous amount of data is unfeasible for small or individual building projects. This study discusses the possibility of the development of a tool that allows building designers to more easily apply the logic of LCA at the early design stage. Minimising data requirements and identifying the most effective parameters that promise to make the most difference, are the key points of simplification method. The conventional LCA framework and knowledge-based system are employed through the simplification process. Results of previous LCA studies in Australia are used as the specific knowledge that enable the system to generate outputs based on the user’s inputs.Keywords: Life Cycle Assessment (LCA), early design stage, most effective parameters, life cycle environmental performance


2016 ◽  
Vol 22 (52) ◽  
pp. 1041-1044
Author(s):  
Takahiro IKE ◽  
Koichi ASANO ◽  
Kenichi HASEGAWA ◽  
Hideto KANNO ◽  
Ryo MURATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document