PM2.5 pollution-related health effects and willingness to pay for improved air quality: Evidence from China’s prefecture-level cities

2020 ◽  
Vol 273 ◽  
pp. 122876
Author(s):  
Bingbing Zhang ◽  
Beibei Wu ◽  
Jing Liu
2017 ◽  
Vol 107 (10) ◽  
pp. 2958-2989 ◽  
Author(s):  
Olivier Deschênes ◽  
Michael Greenstone ◽  
Joseph S. Shapiro

The demand for air quality depends on health impacts and defensive investments, but little research assesses the empirical importance of defenses. A rich quasi-experiment suggests that the Nitrogen Oxides (NOx) Budget Program (NBP), a cap-and-trade market, decreased NOx emissions, ambient ozone concentrations, pharmaceutical expenditures, and mortality rates. The annual reductions in pharmaceutical purchases, a key defensive investment, and mortality are valued at about $800 million and $1.3 billion, respectively, suggesting that defenses are over one-third of willingness-to-pay for reductions in NOx emissions. Further, estimates indicate that the NBP's benefits easily exceed its costs and that NOx reductions have substantial benefits. (JEL I12, Q51, Q53, Q58)


2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


Chemosphere ◽  
2021 ◽  
Vol 268 ◽  
pp. 129385
Author(s):  
Xuguo Zhang ◽  
Jimmy C.H. Fung ◽  
Alexis K.H. Lau ◽  
Md Shakhaoat Hossain ◽  
Peter K.K. Louie ◽  
...  

2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thanh Cong Nguyen ◽  
Hang Dieu Nguyen ◽  
Hoa Thu Le ◽  
Shinji Kaneko

PurposeThis purpose of this paper is to understand residents’ choice of preferred measures and their willingness-to-pay (WTP) for the measures to improve the air quality of Hanoi city.Design/methodology/approachQuestionnaire surveys were conducted to collect the opinions of 212 household representatives living in Hanoi City. The survey tools were tested and adjusted through an online survey with 191 responses. Multivariate probit and linear regression models were used to identify determinants of respondents’ choices of measures and their WTP.FindingsRespondents expressed their strong preferences for three measures for air quality improvements, including: (1) increase of green spaces; (2) use of less polluting fuels; (3) expansion of public transportation. The mean WTP for the implementation of those measures was estimated at about 148,000–282,000 Vietnamese dong, equivalent to 0.09–0.16% of household income. The respondents’ choices appear to be consistent with their characteristics and needs, such as financial affordability, time on roads and their perceived impacts of air pollution. The WTP estimates increase with perception of air pollution impacts, time on roads, education and income; but are lower for older people.Originality/valueTo gain a better understanding of public opinions, we applied multivariate probit models to check whether respondents’ choices were consistent with their characteristics and perceptions. This appears to be the first attempt to test the validity of public opinions on choices of measures for improving urban air quality in Vietnam. Our WTP estimates also contribute to the database on the values of improved air quality in the developing world.


Sign in / Sign up

Export Citation Format

Share Document