Enhancing the nitrogen removal efficiency of a new autotrophic biological nitrogen-removal process based on the iron cycle: Feasibility, progress, and existing problems

2021 ◽  
pp. 128499
Author(s):  
Xiang Li ◽  
Yan Yuan ◽  
Yong Huang
2009 ◽  
Vol 59 (10) ◽  
pp. 1893-1899 ◽  
Author(s):  
W. L. Tsang ◽  
J. Wang ◽  
H. Lu ◽  
S. Li ◽  
G. H. Chen ◽  
...  

This study reports a lab-scale evaluation of a new biological nitrogen removal process for saline sewage treatment, namely a SANI process (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process). The experimental system consisted of an up-flow anaerobic bed for sulfate reduction, an anoxic filter for autotrophic denitrification using dissolved sulfide produced in the up-flow anaerobic bed and an aerobic filter for nitrification. The system successfully operated for more than 180 days with an overall organic carbon removal efficiency of 95%, in which, 82% removal was contributed by the up-flow anaerobic bed operating at a HRT of 6 h, and 13% removal by the anoxic filter. An average COD removed /sulfate removed ratio was found to be 0.76 gCOD/gSO4 or 2.28 COD/gSO4-S further confirming that the organic removal was mainly achieved by the sulfate reduction. In terms of nitrogen removal efficiency, the SANI system was found sensitive to the recirculation rate between the anoxic filter and the aerobic filter. A recirculation rate of 3Q was found to be optimal for achieving 74% of the total nitrogen removal. It was confirmed that the autotrophic denitrification was a major contributor to the total nitrogen removal in the SANI system. Sulfur balance analysis indicated that both the accumulation of elementary sulfur in the biomass and the loss of hydrogen sulfide were trivial. During the entire operation period (330 days to date), no sludge was wasted from any reactors in this system. This was further confirmed by the biomass balance simulation results that low biomass yields of sulfate reducing bacteria, autotrophic denitrifiers and nitrifiers contribute to the zero excess sludge discharge.


Author(s):  
Gabriela Bonassa ◽  
Alice Chiapetti Bolsan ◽  
Camila Ester Hollas ◽  
Bruno Venturin ◽  
Daniela Candido ◽  
...  

2011 ◽  
Vol 281 ◽  
pp. 101-105
Author(s):  
Cheng Cheng Wu ◽  
Yong Zhen Peng ◽  
Liang Zhang ◽  
Shu Ying Wang

A novel post-denitrification system fed by carbon source from primary sludge (PS) was used for enhancing biological nitrogen removal (BNR) of low C/N wastewater. This system included one anoxic/oxic (AO) reactor and a special reactor for simultaneous sludge fermentation and denitrification (Sifeden). Ammonia was nitrified to nitrate in AO and then the nitrate was reduced to dinitrogen in Sifeden , into which PS was added intermittently. Results showed that this system had high performance on nitrogen removal. Total nitrogen (TN) removal efficiency was higher than 85% and the effluent TN≤10mg/L in the condition of influent C/N≤2. In Sifeden, volatile fatty acid (VFA) produced from PS fermentation provided electron donor for nitrate reduction, and PS was preliminarily stabilized simultaneously. Oxidation-Reduction Potential (ORP) had a significant correlation with the denitrification performance. TN removal efficiency could be further improved if adopting proper PS addition strategy according to the ORP profiles.


Sign in / Sign up

Export Citation Format

Share Document