scholarly journals The techno-economics potential of hydrogen interconnectors for electrical energy transmission and storage

2022 ◽  
pp. 130045
Author(s):  
Max Patel ◽  
Sumit Roy ◽  
Anthony Paul Roskilly ◽  
Andrew Smallbone
2012 ◽  
Vol 476-478 ◽  
pp. 1336-1340
Author(s):  
Kai Feng Li ◽  
Rong Liu ◽  
Lin Xiang Wang

The concept of energy harvesting works towards developing self-powered devices that do not require replaceable power supplies. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with ferroelectric materials. Ferroelectric materials have a crystalline structure that provide a unique ability to convert an applied electrical potential into a mechanical strain or vice versa. Based on the properties of the material, this paper investigates the technique of power harvesting and storage.


2011 ◽  
Vol 108 ◽  
pp. 67-73
Author(s):  
Ke Huang ◽  
Zhi Yong Liang ◽  
Li Ping Zhang ◽  
Le Lu

Contactless electrical energy transmission (CEET) system realizes power transmission with no electrical or physical connection by the perfect combination of inductive coupling technique and electronics. This paper studies the characteristics of the CEET system based on the loosely coupled transformer mathematical model, then analyses the power transmission performance and its changing rules in different compensation topologies. We can get the parameter requirements when the load obtains the maximum transmission power from these studies. This work can provide reference to optimize the circuit design and promote the power transmission ability for the CEET system.


The article presents information about the composition of the equipment of resonant power transmission systems. The resonant systems of electrical energy transmission by single-wire cable or overhead lines at elevated frequency include frequency conversion devices, power transmission lines, and devices for the reverse transformation of electrical energy to the voltage required by the consumer. In contrast to traditional systems of electrical power transmission, resonant systems are being operated on an elevated frequency of 5-15 kHz, a power transmission line voltage is 1-10 kV. In this case resonant transformers are used. The frequency of the power transmission system is set by the resonant transmitting transformer; the receiving transformer is a wideband step-down one.The main components of the resonant transmitting transformer are a power resonant circuit and a step-up/step-down winding. The maximum output power of the converter depends on the voltage supplied to the circuit, circuit voltage, circuit capacitance, frequency, and other parameters. One can change the transmitted power by changing the transmission frequency, for example, for lighting systems.Due to the fact that resonant power transmission systems operating at elevated frequency are less demanding on the grounding quality, they are more efficient compared to single wire ground return line operating at a constant current and an alternating current of commercial frequency


2002 ◽  
Vol 20 (5) ◽  
pp. 391-399 ◽  
Author(s):  
Ayhan Demirbaş

In response to increasing electrical energy costs and the desire for better lad management, thermal storage technology has recently been developed. Storage of thermal energy in the form of sensible and latent heat has become an important aspect of energy management with the emphasis on efficient use and conservation of the waste heat and solar energy in industry and buildings. Thermal storage has been characterized as a kind of thermal battery.


2021 ◽  
Vol 18 (3) ◽  
pp. 194-208
Author(s):  
F.M. Dahunsi ◽  
O. A. Somefun ◽  
A.A. Ponnle ◽  
K.B. Adedeji

In recent years, the electric grid has experienced increasing deployment, use, and integration of smart meters and energy monitors. These devices transmit big time-series load data representing consumed electrical energy for load monitoring. However, load monitoring presents reactive issues concerning efficient processing, transmission, and storage. To promote improved efficiency and sustainability of the smart grid, one approach to manage this challenge is applying data-compression techniques. The subject of compressing electrical energy data (EED) has received quite an active interest in the past decade to date. However, a quick grasp of the range of appropriate compression techniques remains somewhat a bottleneck to researchers and developers starting in this domain. In this context, this paper reviews the compression techniques and methods (lossy and lossless) adopted for load  monitoring. Selected top-performing compression techniques metrics were discussed, such as compression efficiency, low reconstruction error, and encoding-decoding speed. Additionally reviewed is the relation between electrical energy, data, and sound compression. This review will motivate further interest in developing standard codecs for the compression of electrical energy data that matches that of other domains.


Sign in / Sign up

Export Citation Format

Share Document