Assessment of semi-dynamic leaching characteristics of lead and zinc from stabilized contaminated soil using sustainable phosphate-based binder after carbonation

2021 ◽  
pp. 130126
Author(s):  
Mingli Wei ◽  
Yuan Li ◽  
Bowei Yu ◽  
Lei Liu ◽  
Qiang Xue ◽  
...  
2015 ◽  
Vol 164 ◽  
pp. 137-145 ◽  
Author(s):  
Micaela A.R. Soares ◽  
Margarida J. Quina ◽  
Rosa M. Quinta-Ferreira

2019 ◽  
Vol 112 ◽  
pp. 03020
Author(s):  
Mihaela Niţu ◽  
Augustina Pruteanu ◽  
Despina Maria Bordean ◽  
Carmen Popescu ◽  
Gyorghy Deak ◽  
...  

Heavy metals in contaminated soils have benefited from a considerable attention due to the possible risks for the human body. The current study has investigated the accumulation and transfer coefficient for three heavy metals (Cu, Pb, Zn) found in the contaminated soil with three concentrations (c1=1.5%, c2=3.0%, c3=4.5%, c4=6.0%), obtained by mixing the three metals, in the tomato fruit. The highest accumulation in the tomato fruits was recorded for zinc, then copper and the smallest for lead, for all four concentrations used. The transfer coefficient decreases as the concentration of heavy metals increases, so that for high heavy metals concentrations, the values of the transfer coefficient are very low, and for small heavy metals concentrations in the soil, the values for the transfer coefficient are higher. The assessment of accumulation and transfer of heavy metals in the fruits of tomatoes grown in the contaminated soil has concluded that all concentrations of the copper, lead and zinc mix have shown a low risk for human consumption.


2016 ◽  
Vol 44 (9) ◽  
pp. 1191-1197 ◽  
Author(s):  
Hong-tao Qiao ◽  
Bao-wei Zhao ◽  
Jing-ru Diao ◽  
Li-ping Huang ◽  
Jin-kui Zhong ◽  
...  

2021 ◽  
pp. 10-18
Author(s):  
Y. Abdullahi ◽  
A. S. Aska ◽  
C. Roberts ◽  
M. S. Abdu ◽  
J. Gambo

Cwmystwyth Lead Mine was an abundant mine site with pugh’s and kingside water drainages shows contaminated water in the research area with no much scientific evidence to ascertain the level of the pollution. Hence this research was designed to study level of lead and zinc in contaminated soil in which the bio-availability and bio-accessibility were measured. Sixteen (16) soil samples were taken at random using soil auger and a hand trowel. The samples were dried using an oven set at a constant temperature of 400oC for 72 hours. Wire mesh (250 microns) was used to sift the samples. The Unified (BARGE) method was used. The mimics mixtures of saliva, gastric, duodenal, and bile fluids. Three-stage mimic processes were performed, in the mouth, the stomach and intestinal cavities. All mimic digestive fluids were placed in the rotator water bath for 1hr at 37oC. The bioaccessibility of the soil Samples were analyzed by inductively coupled plasma-optical emission spectrophotometer (ICP-OES) method. The results were obtained using XRF and ICP methods. The percentage concentration of lead in the topsoil was 0.64% and in the bottom soil was 1.47%, with a total mean concentration of 1.06% in combined top and bottom soil. Zinc concentrations in the top and bottom soils were 0.22 and 0.45%, respectively, with a computed total mean of 0.34%. The findings revealed a highly significant difference between lead and zinc in both the top and bottom soil samples (LSD = P0.05). The average concentrations of lead and zinc extracted in both the stomach and intestinal stages were 15.98% and 1.23%, respectively


2021 ◽  
Vol 11 (24) ◽  
pp. 11822
Author(s):  
Marija Đurić ◽  
Primož Oprčkal ◽  
Vesna Zalar Serjun ◽  
Alenka Mauko Pranjić ◽  
Janez Ščančar ◽  
...  

Paper-ash is used for remediation of heavily contaminated soils with metals, but remediation efficiency after longer periods has not been reported. To gain insights into the mechanisms of immobilization of cadmium (Cd), lead (Pb), and znic (Zn), a study was performed in the laboratory experiment in uncontaminated, artificially contaminated, and remediated soils, and these soils treated with sulfate, to mimic conditions in contaminated soil from zinc smelter site. Remediation was performed by mixing contaminated soil with paper-ash to immobilize Cd, Pb, and Zn in the geotechnical composite. Partitioning of Cd, Pb, and Zn was studied over one year in seven-time intervals applying the sequential extraction procedure and complementary X-ray diffraction analyses. This methodological approach enabled us to follow the redistribution of Cd, Pb, and Zn over time, thus, to studying immobilization mechanisms and assessing the remediation efficiency and stability of newly formed mineral phases. Cd, Pb, and Zn were effectively immobilized by precipitation of insoluble hydroxides after the addition of paper-ash and by the carbonization process in insoluble carbonate minerals. After remediation, Cd, Pb, and Zn concentrations in the water-soluble fraction were well below the limiting values for inertness: Cd by 100 times, Pb by 125 times, and Zn by 10 times. Sulfate treatment did not influence the remediation efficiency. Experimental data confirmed the high remediation efficiency and stability of insoluble Cd, Pb, and Zn mineral phases in geotechnical composites.


2020 ◽  
Vol 26 (4) ◽  
pp. 200256-0
Author(s):  
Zhe Wang ◽  
Hangjun Zhu ◽  
Xuehui Wu ◽  
Binpin Wei ◽  
Hongli Zhou ◽  
...  

A semi-dynamic leaching test was used to simulate the erosion effect of acid rain on magnesium phosphate cement (MPC)-stabilized/solidified zinc-contaminated soil. The leaching characteristics and curing mechanism were studied with a combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Influences of the initial pH value of the simulated acid rain, the ratio of the curing agent (MgO/KH2PO4, abbreviated M/P), and the mass of water glass on the leaching characteristics of Zn<sup>2+</sup> and conductivity in the leachate of the sample were studied. It is shown that the curing effect of the cement component on Zn<sup>2+</sup> is better for M/P = 6 when compared to M/P = 4 in a strong acid environment. While in a weak acid environment, it is observed that the curing effect is superior when M/P = 4. Also it is observed that 4% water glass content can effectively improve the cement curing effect of heavy metal Zn in an acid rain environment. These results indicate that water glass can be effectively applied to MPC solidified heavy metal Zn.


2019 ◽  
Vol 26 (27) ◽  
pp. 28319-28327 ◽  
Author(s):  
Yuqin Liang ◽  
Cong Zhou ◽  
Zhaohui Guo ◽  
Zhongting Huang ◽  
Chi Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document