CdTe layer structures for X-ray and gamma-ray detection directly grown on the Medipix readout-chip by MBE

2017 ◽  
Vol 477 ◽  
pp. 114-117 ◽  
Author(s):  
A. Vogt ◽  
S. Schütt ◽  
K. Frei ◽  
M. Fiederle
Keyword(s):  
X Ray ◽  
Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers ◽  
J.M. Dijkstra

For the calculation of X-ray intensities emitted by elements present in multi-layer systems it is vital to have an accurate knowledge of the x-ray ionization vs. mass-depth (ϕ(ρz)) curves as a function of accelerating voltage and atomic number of films and substrate. Once this knowledge is available the way is open to the analysis of thin films in which both the thicknesses as well as the compositions can usually be determined simultaneously.Our bulk matrix correction “PROZA” with its proven excellent performance for a wide variety of applications (e.g., ultra-light element analysis, extremes in accelerating voltage) has been used as the basis for the development of the software package discussed here. The PROZA program is based on our own modifications of the surface-centred Gaussian ϕ(ρz) model, originally introduced by Packwood and Brown. For its extension towards thin film applications it is required to know how the 4 Gaussian parameters α, β, γ and ϕ(o) for each element in each of the films are affected by the film thickness and the presence of other layers and the substrate.


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-367-C9-370
Author(s):  
C. B. COLLINS ◽  
F. DAVANLOO ◽  
T. S. BOWEN ◽  
J. J. COOGAN
Keyword(s):  

2003 ◽  
Vol 8 (5-6) ◽  
pp. 60-64
Author(s):  
A.I. Arkhangelsky ◽  
◽  
Yu.D. Kotov ◽  
P.Yu. Chistiakov ◽  
◽  
...  

1998 ◽  
Vol 502 (1) ◽  
pp. 428-436 ◽  
Author(s):  
Igor V. Moskalenko ◽  
Werner Collmar ◽  
Volker Schonfelder

1996 ◽  
Vol 165 ◽  
pp. 313-319
Author(s):  
Mark H. Finger ◽  
Robert B. Wilson ◽  
B. Alan Harmon ◽  
William S. Paciesas

A “giant” outburst of A 0535+262, a transient X-ray binary pulsar, was observed in 1994 February and March with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory. During the outburst power spectra of the hard X-ray flux contained a QPO-like component with a FWHM of approximately 50% of its center frequency. Over the course of the outburst the center frequency rose smoothly from 35 mHz to 70 mHz and then fell to below 40 mHz. We compare this QPO frequency with the neutron star spin-up rate, and discuss the observed correlation in terms of the beat frequency and Keplerian frequency QPO models in conjunction with the Ghosh-Lamb accretion torque model.


2021 ◽  
Vol 366 (4) ◽  
Author(s):  
Zhi-Ying Liu ◽  
Fu-Wen Zhang ◽  
Si-Yuan Zhu

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2021 ◽  
Vol 502 (4) ◽  
pp. 4680-4688
Author(s):  
Ankan Sur ◽  
Brynmor Haskell

ABSTRACT In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up to 1 M⊙, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at 1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M⊙ and emits gravitational waves with a lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with the X-ray plateau observed in the light curve of a number of short gamma-ray burst.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


Sign in / Sign up

Export Citation Format

Share Document