A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression

2015 ◽  
Vol 111 ◽  
pp. 57-69 ◽  
Author(s):  
Huu-Tai Thai ◽  
Brian Uy ◽  
Mahbub Khan
2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2922-2935
Author(s):  
Tatheer Zahra ◽  
Julian Thamboo ◽  
Mohammad Asad ◽  
Mengli Song

2019 ◽  
Vol 144 ◽  
pp. 106276 ◽  
Author(s):  
Qihan Shen ◽  
Jingfeng Wang ◽  
Yanbo Wang ◽  
Fengqin Wang

2016 ◽  
Vol 16 (3) ◽  
pp. 777-787 ◽  
Author(s):  
Lanhui Guo ◽  
Yong Liu ◽  
Hui Jiao ◽  
Shilong An

2012 ◽  
Vol 16 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Zhenyu Wang ◽  
Daiyu Wang ◽  
Scott T. Smith ◽  
Dagang Lu

2013 ◽  
Vol 838-841 ◽  
pp. 439-443 ◽  
Author(s):  
Zhi Liang Zuo ◽  
Da Xin Liu ◽  
Jian Cai ◽  
Chun Yang ◽  
Qing Jun Chen

To improve the mechanical behavior of T-shaped concrete-filled steel tubular (T-CFT) column, the method that setting binding bars along the height of steel tube is proposed. Five T-CFT stub columns with binding bars and another two without binding bars subjected to axial compression were tested. The influences of the spacing and diameter of binding bars on the failure modes, maximum strength, and ductility of T-CFT stub columns are investigated. The experimental results demonstrate that by setting binding bars or decreasing the spacing of binding bars, the buckling modes of the steel plates are changed, the local buckling of the steel plates is postponed, and the confinement effects on the core concrete can be improved significantly. By setting binding bars, the bearing capacity and ductility of the columns are enhanced by 1.17 and 3.38 times at most, respectively. By increasing the diameter of binding bars, the ductility of the columns is improved, but the bearing capacity and buckling strength cannot be improved when the diameter is large enough.


Sign in / Sign up

Export Citation Format

Share Document