Behavior of steel beams with different web profiles along the beam length

2021 ◽  
Vol 185 ◽  
pp. 106875
Author(s):  
A.S. Elamary ◽  
Y. Alharthi ◽  
I.A. Sharaky
Keyword(s):  
2019 ◽  
Vol 9 (24) ◽  
pp. 5458 ◽  
Author(s):  
Hai-Bang Ly ◽  
Tien-Thinh Le ◽  
Lu Minh Le ◽  
Van Quan Tran ◽  
Vuong Minh Le ◽  
...  

The principal purpose of this work is to develop three hybrid machine learning (ML) algorithms, namely ANFIS-RCSA, ANFIS-CA, and ANFIS-SFLA which are a combination of adaptive neuro-fuzzy inference system (ANFIS) with metaheuristic optimization techniques such as real-coded simulated annealing (RCSA), cultural algorithm (CA) and shuffled frog leaping algorithm (SFLA), respectively, to predict the critical buckling load of I-shaped cellular steel beams with circular openings. For this purpose, the existing database of buckling tests on I-shaped steel beams were extracted from the available literature and used to generate the datasets for modeling. Eight inputs, considered as independent variables, including the beam length, beam end-opening distance, opening diameter, inter-opening distance, section height, web thickness, flange width, and flange thickness, as well as one output of the critical buckling load of cellular steel beams considered as a dependent variable, were used in the datasets. Three quality assessment criteria, namely correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE) were employed for assessment of three developed hybrid ML models. The obtained results indicate that all three hybrid ML models have a strong ability to predict the buckling load of steel beams with circular openings, but ANFIS-SFLA (R = 0.960, RMSE = 0.040 and MAE = 0.017) exhibits the best effectiveness as compared with other hybrid models. In addition, sensitivity analysis was investigated and compared with linear statistical correlation between inputs and output to validate the importance of input variables in the models. The sensitivity results show that the most influenced variable affecting beam buckling capacity is the beam length, following by the flange width, the flange thickness, and the web thickness, respectively. This study shows that the hybrid ML techniques could help in establishing a robust numerical tool for beam buckling analysis. The proposed methodology is also promising to predict other types of failure, as well as other types of perforated beams.


1996 ◽  
Vol 444 ◽  
Author(s):  
Maarten P. de Boer ◽  
Terry A. Michalske

AbstractWe have measured autoadhesion (e.g. stiction) of individual polysilicon beams by interferometric optical microscopy. Untreated cantilever beams were dried from water in air, while treated beams were coated with a hydrophobic molecular coating of octadecyltrichlorosilane (ODTS). Adhesion values obtained for beams adhered to the substrate over a long length (large d) are independent of beam length with values of 16.7 and 4.4 mJ/m2 for untreated and treated samples respectively. These values can be understood in terms of differences in surface chemistry and polysilicon roughness. Using the shortest length beam which remains attached to the substrate, adhesion values were 280 and 16 mJ/m2 respectively. These higher values may be a result of capillarity effects. We recommend that measurements be made on beams in which d is large, in contrast to the current practice of noting the shortest beam adhered.


2020 ◽  
pp. 136943322098166
Author(s):  
Shuhao Yin ◽  
Bin Rong ◽  
Lei Wang ◽  
Yiliang Sun ◽  
Wuchen Zhang ◽  
...  

This paper studies the shear performance of the connection with the external stiffening ring between the square steel tubular column and unequal-depth steel beams. Two specimens of interior column connections were tested under low cyclic loading. The deformation characteristics and failure modes exhibited by the test phenomena can be summarized as: (1) two specimens all exhibited shear deformation in steel tube web of the panel zone and (2) weld fracture in the panel zone and plastic hinge failure at beam end were observed. Besides, load-displacement behaviors and strain distributions have been also discussed. The nonlinear finite element models were developed to verify the test results. Comparative analyses of the bearing capacity, failure mode, and load-paths between the equal-depth and unequal-depth beam models have been carried out.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 650
Author(s):  
Ruide Yun ◽  
Yangsheng Zhu ◽  
Zhiwei Liu ◽  
Jianmei Huang ◽  
Xiaojun Yan ◽  
...  

We report a novel electrostatic self-excited resonator driven by DC voltage that achieves variable velocity-position characteristics via applying the pre-tension/pre-compression constraint. The resonator consists of a simply supported micro-beam, two plate electrodes, and two adjustable constraint bases, and it can be under pre-compression or pre-tension constraint by adjusting the distance L between two constraint bases (when beam length l > L, the resonator is under pre-compression and when l < L, it is under pre-tension). The oscillating velocity of the beam reaches the maximum value in the position around electrodes under the pre-compression constraint and reaches the maximum value in the middle position between two electrodes under the pre-tension condition. By changing the constraint of the microbeam, the position of the maximum velocity output of the oscillating beam can be controlled. The electrostatic self-excited resonator with a simple constraint structure under DC voltage has great potential in the field of propulsion of micro-robots, such as active rotation control of flapping wings.


Author(s):  
Langni Deng ◽  
Mengjun Zhong ◽  
Yang Liu ◽  
Ling Liao ◽  
Shijin Lai ◽  
...  

2014 ◽  
Vol 74 ◽  
pp. 104-117 ◽  
Author(s):  
Luís Laím ◽  
João Paulo C. Rodrigues ◽  
Luis Simões da Silva

2021 ◽  
Vol 11 (7) ◽  
pp. 3266
Author(s):  
Insub Choi ◽  
Dongwon Kim ◽  
Junhee Kim

Under high gravity loads, steel double-beam floor systems need to be reinforced by beam-end concrete panels to reduce the material quantity since rotational constraints from the concrete panel can decrease the moment demand by inducing a negative moment at the ends of the beams. However, the optimal design process for the material quantity of steel beams requires a time-consuming iterative analysis for the entire floor system while especially keeping in consideration the rotational constraints in composite connections between the concrete panel and steel beams. This study aimed to develop an optimal design method with the LM (Length-Moment) index for the steel double-beam floor system to minimize material quantity without the iterative design process. The LM index is an indicator that can select a minimum cross-section of the steel beams in consideration of the flexural strength by lateral-torsional buckling. To verify the proposed design method, the material quantities between the proposed and code-based design methods were compared at various gravity loads. The proposed design method successfully optimized the material quantity of the steel double-beam floor systems without the iterative analysis by simply choosing the LM index of the steel beams that can minimize objective function while satisfying the safety-related constraint conditions. In particular, under the high gravity loads, the proposed design method was superb at providing a quantity-optimized design option. Thus, the proposed optimal design method can be an alternative for designing the steel double-beam floor system.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1414-1427
Author(s):  
Selvakumarasami Kumaraguru ◽  
Paramasivan Alagusundaramoorthy

Sign in / Sign up

Export Citation Format

Share Document