Bifurcation for a free-boundary tumor model with extracellular matrix and matrix degrading enzymes

2020 ◽  
Vol 268 (6) ◽  
pp. 3152-3170 ◽  
Author(s):  
Jiayue Zheng ◽  
Ruixiang Xing
PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0245708
Author(s):  
Eun Seob Lim ◽  
Seung-Youb Baek ◽  
Taeyoung Oh ◽  
Minseon Koo ◽  
Joo Young Lee ◽  
...  

Bacillus cereus is a foodborne pathogen and can form biofilms on food contact surfaces, which causes food hygiene problems. While it is necessary to understand strain-dependent variation to effectively control these biofilms, strain-to-strain variation in the structure of B. cereus biofilms is poorly understood. In this study, B. cereus strains from tatsoi (BC4, BC10, and BC72) and the ATCC 10987 reference strain were incubated at 30°C to form biofilms in the presence of the extracellular matrix-degrading enzymes DNase I, proteinase K, dispase II, cellulase, amyloglucosidase, and α-amylase to assess the susceptibility to these enzymes. The four strains exhibited four different patterns in terms of biofilm susceptibility to the enzymes as well as morphology of surface-attached biofilms or suspended cell aggregates. DNase I inhibited the biofilm formation of strains ATCC 10987 and BC4 but not of strains BC10 and BC72. This result suggests that some strains may not have extracellular DNA, or their extracellular DNA may be protected in their biofilms. In addition, the strains exhibited different patterns of susceptibility to protein- and carbohydrate-degrading enzymes. While other strains were resistant, strains ATCC 10987 and BC4 were susceptible to cellulase, suggesting that cellulose or its similar polysaccharides may exist and play an essential role in their biofilm formation. Our compositional and imaging analyses of strains ATCC 10987 and BC4 suggested that the physicochemical properties of their biofilms are distinct, as calculated by the carbohydrate to protein ratio. Taken together, our study suggests that the extracellular matrix of B. cereus biofilms may be highly diverse and provides insight into the diverse mechanisms of biofilm formation among B. cereus strains.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Young-Ok Son ◽  
Seulki Park ◽  
Ji-Sun Kwak ◽  
Yoonkyung Won ◽  
Wan-Su Choi ◽  
...  

2021 ◽  
Author(s):  
Eun Seob Lim ◽  
Seung-Youb Baek ◽  
Taeyoung Oh ◽  
Minseon Koo ◽  
Joo Young Lee ◽  
...  

Bacillus cereus is a foodborne pathogen and can form biofilms on food contact surfaces, which causes food hygiene problems. While it is necessary to understand strain-dependent variation to effectively control these biofilms, strain-to-strain variation in the structure of B. cereus biofilms is poorly understood. In this study, B. cereus strains from tatsoi and the ATCC 10987 reference strain were incubated at 30? to form biofilms in the presence of the extracellular matrix-degrading enzymes DNase I, proteinase K, dispase II, cellulase, amyloglucosidase, and α-amylase to assess the susceptibility to these enzymes. The four strains exhibited four different patterns in terms of biofilm susceptibility to the enzymes as well as morphology of surface-attached biofilms or suspended cell aggregates. DNase I inhibited the biofilm formation of strains ATCC 10987 and BC4 but not of strains BC10 and BC72. This result suggests that some strains may not have extracellular DNA, or their extracellular DNA may be protected in their biofilms. In addition, the strains exhibited different patterns of susceptibility to protein- and carbohydrate-degrading enzymes. While other strains were resistant, strains ATCC 10987 and BC4 were susceptible to cellulase, suggesting that cellulose or its similar polysaccharides may exist and play an essential role in their biofilm formation. Our compositional analysis of strains ATCC 10987 and BC4 suggested that the physicochemical properties of their biofilms are distinct, as calculated by the carbohydrate to protein ratio. Taken together, our study suggests that the extracellular matrix of B. cereus biofilms may be highly diverse and provides insight into the diverse mechanisms of biofilm formation among B. cereus strains.


Physiology ◽  
1989 ◽  
Vol 4 (1) ◽  
pp. 9-12
Author(s):  
JH Campbell ◽  
GR Campbell

The mechanism by which a change in smooth muscle phenotype is effected in the artery wall during atherogenesis may be via release of extracellular matrix-degrading enzymes, particularly heparanase, from activated macrophages and T lymphocytes.


Endocrinology ◽  
2017 ◽  
Vol 159 (2) ◽  
pp. 733-743 ◽  
Author(s):  
Keisuke Nakajima ◽  
Ichiro Tazawa ◽  
Yoshio Yaoita

Abstract Thyroid hormone (TH) binds TH receptor α (TRα) and β (TRβ) to induce amphibian metamorphosis. Whereas TH signaling has been well studied, functional differences between TRα and TRβ during this process have not been characterized. To understand how each TR contributes to metamorphosis, we generated TRα- and TRβ-knockout tadpoles of Xenopus tropicalis and examined developmental abnormalities, histology of the tail and intestine, and messenger RNA expression of genes encoding extracellular matrix–degrading enzymes. In TRβ-knockout tadpoles, tail regression was delayed significantly and a healthy notochord was observed even 5 days after the initiation of tail shortening (stage 62), whereas in the tails of wild-type and TRα-knockout tadpoles, the notochord disappeared after ∼1 day. The messenger RNA expression levels of genes encoding extracellular matrix–degrading enzymes (MMP2, MMP9TH, MMP13, MMP14, and FAPα) were obviously reduced in the tail tip of TRβ-knockout tadpoles, with the shortening tail. The reduction in olfactory nerve length and head narrowing by gill absorption were also affected. Hind limb growth and intestinal shortening were not compromised in TRβ-knockout tadpoles, whereas tail regression and olfactory nerve shortening appeared to proceed normally in TRα-knockout tadpoles, except for the precocious development of hind limbs. Our results demonstrated the distinct roles of TRα and TRβ in hind limb growth and tail regression, respectively.


Sign in / Sign up

Export Citation Format

Share Document