Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves

2003 ◽  
Vol 66A (4) ◽  
pp. 755-763 ◽  
Author(s):  
Dan T. Simionescu ◽  
Joshua J. Lovekamp ◽  
Narendra R. Vyavahare
2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Uri Galili ◽  
Kevin R. Stone

This review describes the first studies on successful conversion of porcine soft-tissue bioprostheses into viable permanently functional tissue in humans. This process includes gradual degradation of the porcine tissue, with concomitant neo-vascularization and reconstruction of the implanted bioprosthesis with human cells and extracellular matrix. Such a reconstruction process is referred to in this review as “humanization”. Humanization was achieved with porcine bone-patellar-tendon-bone (BTB), replacing torn anterior-cruciate-ligament (ACL) in patients. In addition to its possible use in orthopedic surgery, it is suggested that this humanization method should be studied as a possible mechanism for converting implanted porcine bioprosthetic heart-valves (BHV) into viable tissue valves in young patients. Presently, these patients are only implanted with mechanical heart-valves, which require constant anticoagulation therapy. The processing of porcine bioprostheses, which enables humanization, includes elimination of α-gal epitopes and partial (incomplete) crosslinking with glutaraldehyde. Studies on implantation of porcine BTB bioprostheses indicated that enzymatic elimination of α-gal epitopes prevents subsequent accelerated destruction of implanted tissues by the natural anti-Gal antibody, whereas the partial crosslinking by glutaraldehyde molecules results in their function as “speed bumps” that slow the infiltration of macrophages. Anti-non gal antibodies produced against porcine antigens in implanted bioprostheses recruit macrophages, which infiltrate at a pace that enables slow degradation of the porcine tissue, neo-vascularization, and infiltration of fibroblasts. These fibroblasts align with the porcine collagen-fibers scaffold, secrete their collagen-fibers and other extracellular-matrix (ECM) components, and gradually replace porcine tissues degraded by macrophages with autologous functional viable tissue. Porcine BTB implanted in patients completes humanization into autologous ACL within ~2 years. The similarities in cells and ECM comprising heart-valves and tendons, raises the possibility that porcine BHV undergoing a similar processing, may also undergo humanization, resulting in formation of an autologous, viable, permanently functional, non-calcifying heart-valves.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0245708
Author(s):  
Eun Seob Lim ◽  
Seung-Youb Baek ◽  
Taeyoung Oh ◽  
Minseon Koo ◽  
Joo Young Lee ◽  
...  

Bacillus cereus is a foodborne pathogen and can form biofilms on food contact surfaces, which causes food hygiene problems. While it is necessary to understand strain-dependent variation to effectively control these biofilms, strain-to-strain variation in the structure of B. cereus biofilms is poorly understood. In this study, B. cereus strains from tatsoi (BC4, BC10, and BC72) and the ATCC 10987 reference strain were incubated at 30°C to form biofilms in the presence of the extracellular matrix-degrading enzymes DNase I, proteinase K, dispase II, cellulase, amyloglucosidase, and α-amylase to assess the susceptibility to these enzymes. The four strains exhibited four different patterns in terms of biofilm susceptibility to the enzymes as well as morphology of surface-attached biofilms or suspended cell aggregates. DNase I inhibited the biofilm formation of strains ATCC 10987 and BC4 but not of strains BC10 and BC72. This result suggests that some strains may not have extracellular DNA, or their extracellular DNA may be protected in their biofilms. In addition, the strains exhibited different patterns of susceptibility to protein- and carbohydrate-degrading enzymes. While other strains were resistant, strains ATCC 10987 and BC4 were susceptible to cellulase, suggesting that cellulose or its similar polysaccharides may exist and play an essential role in their biofilm formation. Our compositional and imaging analyses of strains ATCC 10987 and BC4 suggested that the physicochemical properties of their biofilms are distinct, as calculated by the carbohydrate to protein ratio. Taken together, our study suggests that the extracellular matrix of B. cereus biofilms may be highly diverse and provides insight into the diverse mechanisms of biofilm formation among B. cereus strains.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Young-Ok Son ◽  
Seulki Park ◽  
Ji-Sun Kwak ◽  
Yoonkyung Won ◽  
Wan-Su Choi ◽  
...  

2021 ◽  
Author(s):  
Eun Seob Lim ◽  
Seung-Youb Baek ◽  
Taeyoung Oh ◽  
Minseon Koo ◽  
Joo Young Lee ◽  
...  

Bacillus cereus is a foodborne pathogen and can form biofilms on food contact surfaces, which causes food hygiene problems. While it is necessary to understand strain-dependent variation to effectively control these biofilms, strain-to-strain variation in the structure of B. cereus biofilms is poorly understood. In this study, B. cereus strains from tatsoi and the ATCC 10987 reference strain were incubated at 30? to form biofilms in the presence of the extracellular matrix-degrading enzymes DNase I, proteinase K, dispase II, cellulase, amyloglucosidase, and α-amylase to assess the susceptibility to these enzymes. The four strains exhibited four different patterns in terms of biofilm susceptibility to the enzymes as well as morphology of surface-attached biofilms or suspended cell aggregates. DNase I inhibited the biofilm formation of strains ATCC 10987 and BC4 but not of strains BC10 and BC72. This result suggests that some strains may not have extracellular DNA, or their extracellular DNA may be protected in their biofilms. In addition, the strains exhibited different patterns of susceptibility to protein- and carbohydrate-degrading enzymes. While other strains were resistant, strains ATCC 10987 and BC4 were susceptible to cellulase, suggesting that cellulose or its similar polysaccharides may exist and play an essential role in their biofilm formation. Our compositional analysis of strains ATCC 10987 and BC4 suggested that the physicochemical properties of their biofilms are distinct, as calculated by the carbohydrate to protein ratio. Taken together, our study suggests that the extracellular matrix of B. cereus biofilms may be highly diverse and provides insight into the diverse mechanisms of biofilm formation among B. cereus strains.


2021 ◽  
Vol 6 (3) ◽  
pp. 25-34
Author(s):  
R. A. Mukhamadiyarov ◽  
I. V. Milto ◽  
A. G. Kutikhin

Aim. To study the ultrastructure of mitral bioprosthetic heart valves (BHVs) which failed due to infective endocarditis.Materials and Methods. Here we examined 7 ethylene glycol diglycidyl ether-treated xenopericardial BHVs excised during repeated BHV replacement because of prosthetic endocarditis. After being fixed in formalin and postfixed in osmium tetroxide, BHVs were dehydrated and stained in uranyl acetate with the subsequent embedding into epoxy resin, grinding, polishing, and lead citrate counterstaining. Upon the sputter coating with carbon, we visualised the BHV microanatomy by means of backscattered scanning electron microscopy at 15 kV voltage.Results. The extracellular matrix underwent degradation and disintegration resulting in loosening, fragmentation, and reduction in the electron density of collagen and elastin fibers. We observed a number of recipient cells (macrophages, multinucleated giant cells, neutrophils, endothelial cells and smooth muscle cells) within the BHVs. The highest number of cells was localized on the valve surfaces. The localization of the recipient cells on the ventricular and atrial surfaces was different. The central part of the valves was abundantly populated by macrophages.Conclusion. Prosthetic endocarditis is accompanied by the migration of recipient cells into the BHV structure, which is the consequence of surface and extracellular matrix disintegration.


Physiology ◽  
1989 ◽  
Vol 4 (1) ◽  
pp. 9-12
Author(s):  
JH Campbell ◽  
GR Campbell

The mechanism by which a change in smooth muscle phenotype is effected in the artery wall during atherogenesis may be via release of extracellular matrix-degrading enzymes, particularly heparanase, from activated macrophages and T lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document