scholarly journals Invariants and wave breaking analysis of a Camassa-Holm type equation with quadratic and cubic non-linearities

2020 ◽  
Vol 269 (8) ◽  
pp. 56-77
Author(s):  
Igor Leite Freire ◽  
Nazime Sales Filho ◽  
Ligia Corrêa de Souza ◽  
Carlos Eduardo Toffoli
Keyword(s):  
Author(s):  
Wael Sulayman Miftah Ammar ◽  
Ying Shi

Bores propagating in shallow water transform into undular bores and, finally, into trains of solitons. The observed number and height of these undulations and later discrete solitons are strongly dependent on the propagation length of the bore. Empirical results show that the final height of the leading soliton in the far-field is twice the initial mean bore height. The complete disintegration of the initial bore into a train of solitons requires very long propagation, but unfortunately, these required distances are usually not available in experimental tests of nature. Therefore, the analysis of the bore decomposition for experimental data into solitons is complicated and requires different approaches. Previous studies have shown that by applying the nonlinear Fourier transform based on the Ko- rteweg–de Vries equation (KdV-NFT) to bores and long-period waves propagating in constant depth, the number and height of all solitons can be reliably predicted already based on the initial bore-shaped free surface. Against this background, this study presents the systematic analysis of the leading-soliton amplitudes for non-breaking and breaking bores with different strengths in different water depths to validate the KdV-NFT results for non-breaking bores to show the limitations of wave breaking on the spectral results. The analytical results are compared with data from experimental tests, numerical simulations and other approaches from the literature.


2014 ◽  
Vol 748 ◽  
pp. 692-711 ◽  
Author(s):  
Francesco Fedele

AbstractLong-time evolution of a weakly perturbed wavetrain near the modulational instability (MI) threshold is examined within the framework of the compact Zakharov equation for unidirectional deep-water waves (Dyachenko and Zakharov, JETP Lett., vol. 93, 2011, pp. 701–705). Multiple-scale solutions reveal that a perturbation to a slightly unstable uniform wavetrain of steepness $\mu $ slowly evolves according to a nonlinear Schrodinger equation (NLS). In particular, for small carrier wave steepness $\mu <\mu _{1}\approx 0.27$ the perturbation dynamics is of focusing type and the long-time behaviour is characterized by the Fermi–Pasta–Ulam recurrence, the signature of breather interactions. However, the amplitude of breathers and their likelihood of occurrence tend to diminish as $\mu $ increases while the Benjamin–Feir index (BFI) decreases and becomes nil at $\mu _{1}$. This indicates that homoclinic orbits persist only for small values of wave steepness $\mu \ll \mu _{1}$, in agreement with recent experimental and numerical observations of breathers. When the compact Zakharov equation is beyond its nominal range of validity, i.e. for $\mu >\mu _{1}$, predictions seem to foreshadow a dynamical trend to wave breaking. In particular, the perturbation dynamics becomes of defocusing type, and nonlinearities tend to stabilize a linearly unstable wavetrain as the Fermi–Pasta–Ulam recurrence is suppressed. At $\mu =\mu _{c}\approx 0.577$, subharmonic perturbations restabilize and superharmonic instability appears, possibly indicating that wave dynamical behaviour changes at large steepness, in qualitative agreement with the numerical simulations of Longuet-Higgins and Cokelet (Proc. R. Soc. Lond. A, vol. 364, 1978, pp. 1–28) for steep waves. Indeed, for $\mu >\mu _{c}$ a multiple-scale perturbation analysis reveals that a weak narrowband perturbation to a uniform wavetrain evolves in accord with a modified Korteweg–de Vries/Camassa–Holm type equation, again implying a possible mechanism conducive to wave breaking.


2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.


Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


2002 ◽  
Author(s):  
David M. Farmer ◽  
Johannes Gemmrich

Sign in / Sign up

Export Citation Format

Share Document