scholarly journals On certain properties of the compact Zakharov equation

2014 ◽  
Vol 748 ◽  
pp. 692-711 ◽  
Author(s):  
Francesco Fedele

AbstractLong-time evolution of a weakly perturbed wavetrain near the modulational instability (MI) threshold is examined within the framework of the compact Zakharov equation for unidirectional deep-water waves (Dyachenko and Zakharov, JETP Lett., vol. 93, 2011, pp. 701–705). Multiple-scale solutions reveal that a perturbation to a slightly unstable uniform wavetrain of steepness $\mu $ slowly evolves according to a nonlinear Schrodinger equation (NLS). In particular, for small carrier wave steepness $\mu <\mu _{1}\approx 0.27$ the perturbation dynamics is of focusing type and the long-time behaviour is characterized by the Fermi–Pasta–Ulam recurrence, the signature of breather interactions. However, the amplitude of breathers and their likelihood of occurrence tend to diminish as $\mu $ increases while the Benjamin–Feir index (BFI) decreases and becomes nil at $\mu _{1}$. This indicates that homoclinic orbits persist only for small values of wave steepness $\mu \ll \mu _{1}$, in agreement with recent experimental and numerical observations of breathers. When the compact Zakharov equation is beyond its nominal range of validity, i.e. for $\mu >\mu _{1}$, predictions seem to foreshadow a dynamical trend to wave breaking. In particular, the perturbation dynamics becomes of defocusing type, and nonlinearities tend to stabilize a linearly unstable wavetrain as the Fermi–Pasta–Ulam recurrence is suppressed. At $\mu =\mu _{c}\approx 0.577$, subharmonic perturbations restabilize and superharmonic instability appears, possibly indicating that wave dynamical behaviour changes at large steepness, in qualitative agreement with the numerical simulations of Longuet-Higgins and Cokelet (Proc. R. Soc. Lond. A, vol. 364, 1978, pp. 1–28) for steep waves. Indeed, for $\mu >\mu _{c}$ a multiple-scale perturbation analysis reveals that a weak narrowband perturbation to a uniform wavetrain evolves in accord with a modified Korteweg–de Vries/Camassa–Holm type equation, again implying a possible mechanism conducive to wave breaking.

2017 ◽  
Vol 828 ◽  
pp. 661-679 ◽  
Author(s):  
A. I. Dyachenko ◽  
D. I. Kachulin ◽  
V. E. Zakharov

Mathematicians and physicists have long been interested in the subject of water waves. The problems formulated in this subject can be considered fundamental, but many questions remain unanswered. For instance, a satisfactory analytic theory of such a common and important phenomenon as wave breaking has yet to be developed. Our knowledge of the formation of rogue waves is also fairly poor despite the many efforts devoted to this subject. One of the most important tasks of the theory of water waves is the construction of simplified mathematical models that are applicable to the description of these complex events under the assumption of weak nonlinearity. The Zakharov equation, as well as the nonlinear Schrödinger equation (NLSE) and the Dysthe equation (which are actually its simplifications), are among them. In this article, we derive a new modification of the Zakharov equation based on the assumption of unidirectionality (the assumption that all waves propagate in the same direction). To derive the new equation, we use the Hamiltonian form of the Euler equation for an ideal fluid and perform a very specific canonical transformation. This transformation is possible due to the ‘miraculous’ cancellation of the non-trivial four-wave resonant interaction in the one-dimensional wave field. The obtained equation is remarkably simple. We call the equation the ‘super compact water wave equation’. This equation includes a nonlinear wave term (à la NLSE) together with an advection term that can describe the initial stage of wave breaking. The NLSE and the Dysthe equations (DystheProc. R. Soc. Lond.A, vol. 369, 1979, pp. 105–114) can be easily derived from the super compact equation. This equation is also suitable for analytical studies as well as for numerical simulation. Moreover, this equation also allows one to derive a spatial version of the water wave equation that describes experiments in flumes and canals.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 67 ◽  
Author(s):  
Dmitry Kachulin ◽  
Alexander Dyachenko ◽  
Vladimir Zakharov

We investigate and compare soliton turbulence appearing as a result of modulational instability of the homogeneous wave train in three nonlinear models for surface gravity waves: the nonlinear Schrödinger equation, the super compact Zakharov equation, and the fully nonlinear equations written in conformal variables. We show that even at a low level of energy and average wave steepness, the wave dynamics in the nonlinear Schrödinger equation fundamentally differ from the dynamics in more accurate models. We study energy losses of wind waves due to their breaking for large values of total energy in the super compact Zakharov equation and in the exact equations and show that in both models, the wave system loses 50% of energy very slowly, during few days.


2001 ◽  
Vol 152-153 ◽  
pp. 416-433 ◽  
Author(s):  
M.J. Ablowitz ◽  
J. Hammack ◽  
D. Henderson ◽  
C.M. Schober

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Clovis Ntahkie Takembo ◽  
Henri Paul Ekobena Fouda

Abstract Based on the improved FitzHugh–Nagumo myocardial model driven by a constant external current, the effect of temperature fluctuation in a network of electrically coupled myocardial cells are investigated through analytical and numerical computations. Through the technique of multiple scale expansion, we successfully reduced the complex nonlinear system of equations to a more tractable and solvable nonlinear amplitude equation on which the analysis of linear stability is performed. Interestingly from this analysis, a plot of critical amplitude of action potential versus wave number revealed the growth rate of modulational instability (MI) is an increasing function of the thermoelectric couplings; $$T^{(1)}$$ T ( 1 ) and $$T^{(2)}$$ T ( 2 ) , under fixed conditions of nonlinear electrical couplings. In order to verify our analytical predictions through the study the long-time evolution of the modulated cardiac impulses, numerical computation is finally carried out. Numerical experiment revealed the existence of localized coherent structures with some recognized features of synchronization. Through the mechanism of MI, changes in thermoelectrical couplings promote wave localization and mode transition in electrical activities in the cell lattice. Results could provide new insights in understanding the underlying mechanism of the manifestation of sudden heart disorder subjected to heavily temperature fluctuation.


2021 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Alessio Innocenti ◽  
Miguel Onorato ◽  
Carlo Brandini

Extreme sea waves, although rare, can be notably dangerous when associated with energetic sea states and can generate risks for the navigation. In the last few years, they have been the object of extensive research from the scientific community that helped with understanding the main physical aspects; however, the estimate of extreme waves probability in operational forecasts is still debated. In this study, we analyzed a number of sea-states that occurred in a precise area of the Mediterranean sea, near the location of a reported accident, with the objective of relating the probability of extreme events with different sea state conditions. For this purpose, we performed phase-resolving simulations of wave spectra obtained from a WaveWatch III hindcast, using a Higher Order Spectral Method. We produced statistics of the sea-surface elevation field, calculating crest distributions and the probability of extreme events from the analysis of a long time-series of the surface elevation. We found a good matching between the distributions of the numerically simulated field and theory, namely Tayfun second- and third- order ones, in contrast with a significant underestimate given by the Rayleigh distribution. We then related spectral quantities like angular spreading and wave steepness to the probability of occurrence of extreme events finding an enhanced probability for high mean steepness seas and narrow spectra, in accordance with literature results, finding also that the case study of the reported accident was not amongst the most dangerous. Finally, we related the skewness and kurtosis of the surface elevation to the wave steepness to explain the discrepancy between theoretical and numerical distributions.


1987 ◽  
Vol 184 ◽  
pp. 267-288 ◽  
Author(s):  
Douglas G. Dommermuth ◽  
Dick K. P. Yue

We develop a robust numerical method for modelling nonlinear gravity waves which is based on the Zakharov equation/mode-coupling idea but is generalized to include interactions up to an arbitrary order M in wave steepness. A large number (N = O(1000)) of free wave modes are typically used whose amplitude evolutions are determined through a pseudospectral treatment of the nonlinear free-surface conditions. The computational effort is directly proportional to N and M, and the convergence with N and M is exponentially fast for waves up to approximately 80% of Stokes limiting steepness (ka ∼ 0.35). The efficiency and accuracy of the method is demonstrated by comparisons to fully nonlinear semi-Lagrangian computations (Vinje & Brevig 1981); calculations of long-time evolution of wavetrains using the modified (fourth-order) Zakharov equations (Stiassnie & Shemer 1987); and experimental measurements of a travelling wave packet (Su 1982). As a final example of the usefulness of the method, we consider the nonlinear interactions between two colliding wave envelopes of different carrier frequencies.


2021 ◽  
Author(s):  
Dimitrios Mitsotakis ◽  
Hendrik Ranocha ◽  
David I Ketcheson ◽  
Endre Süli

The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a class of equations derived recently and can be used in practical simulations to describe the propagation of weakly nonlinear and weakly dispersive long water waves, such as tsunamis. Studies of small-amplitude long waves usually require long-time simulations in order to investigate scenarios such as the overtaking collision of two solitary waves or the propagation of transoceanic tsunamis. For long-time simulations of non-dissipative waves such as solitary waves, the preservation of the total energy by the numerical method can be crucial in the quality of the approximation. The new conservative fully-discrete method consists of a Galerkin finite element method for spatial semidiscretisation and an explicit relaxation Runge--Kutta scheme for integration in time. The Galerkin method is expressed and implemented in the framework of mixed finite element methods. The paper provides an extended experimental study of the accuracy and convergence properties of the new numerical method. The experiments reveal a new convergence pattern compared to standard Galerkin methods.


1989 ◽  
Vol 209 ◽  
pp. 249-263 ◽  
Author(s):  
Lev Shemer ◽  
Eliezer Kit

Results of an experimental and numerical study of parametrically excited nonlinear cross-waves in the vicinity of the cut-off frequency, are reported. Experiments are performed at three cross-wave modes and in the whole range of existence of cross-waves. Numerical studies are based on the solution of the nonlinear Schrödinger equation with a boundary condition at the wavemaker which corresponds to parametric excitation. The validity of the scaling procedure adopted in the model is verified experimentally. Dissipation is incorporated in the model equation and in the wavemaker boundary condition. The influence of the wave breaking on the range of existence of cross-waves is discussed and the relation between the maximum possible steepness of cross-waves and the limits of their existence is obtained.


Sign in / Sign up

Export Citation Format

Share Document