The influence of long term water immersion on shear bond strength of amalgam repaired by resin composite and mediated by adhesives or resin modified glass ionomers

2012 ◽  
Vol 40 (7) ◽  
pp. 594-602 ◽  
Author(s):  
R. Pilo ◽  
J. Nissan ◽  
H. Shafir ◽  
G. Shapira ◽  
E. Alter ◽  
...  
2013 ◽  
Vol 7 (1) ◽  
pp. 123-125 ◽  
Author(s):  
T.T. Heikkinen ◽  
J.P Matinlinna ◽  
P.K. Vallittu ◽  
L.V.J. Lassila

Objective of this study was to evaluate the effects of long term water storage and ageing on the bond strength of resin composite cement to yttria-stabilized zirconium dioxide (zirconia) and dialuminium trioxide (alumina). Substrate specimens of alumina and zirconia were air particle abraded with dialuminium trioxide before priming and application of composite resin. Priming was made with gamma metharyloxy-trimethoxysilane or acryloxypropyl-trimethoxysilane monomer after which the intermediate dimethacrylate resin was applied and photopolymerized. This was followed by curing particulate composite resin cement (Relyx ARC) to the substrate as a resin stub. The ageing methods of the specimens (n=6) were: (1) they stored four years in 37±1ºC distilled water, (2) thermocycled 8000 times between 55±1ºC and 5±1ºC, (3) stored first in water for four years and then thermocycled. Specimens which were stored dry, were used as controls. Bonding of composite resin was measured by shear-bond strength test set-up. Both thermocycling and long-term water storage decreased significantly shear bond strength values compared to the control group (from the level of 20 MPa to 5 MPa) regardless of the used primer or the type of the substrate. Combination of four years water storage and thermocyling reduced the bond strength even more, to the level of two to three megapascals. In can be concluded that water storage and thermocycling itselves, and especially combination of water storage and thermocycling can cause considerable reduction in the bond strength of composite resin cement to alumina and zirconia.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Simon Flury ◽  
Adrian Lussi ◽  
Anne Peutzfeldt

This study investigated the effect of benzalkonium chloride (BAC) modification of two adhesive systems on long-term bond strength to normal and artificially eroded dentin. A total of 128 extracted human molars were sectioned and the buccal and oral surfaces of each molar were ground until the dentin. One half was left untreated (normal dentin) while the other half underwent artificial erosion. Resin composite was bonded to the buccal or oral surface following treatment with Adper Scotchbond 1XT or OptiBond FL without or with 1% BAC incorporation. Shear bond strength (SBS) was measured after 24 h (100% humidity, 37°C) or 1 year (tap water, 37°C). SBS results were statistically analyzed (α = 0.05). SBS was significantly lower to artificially eroded dentin than to normal dentin (p<0.001). Storage for 1 year had no effect on SBS to normal dentin but led to a significant decrease in SBS to artificially eroded dentin (p<0.001). BAC incorporation decreased the 24 h SBS to normal dentin (p=0.018), increased the 24 h SBS to eroded dentin (p=0.001), and had no effect on the 1-year SBS for either substrate. Consequently, BAC incorporation did not improve bond durability.


2020 ◽  
Vol 8 (02) ◽  
pp. 49-54
Author(s):  
Salil Mehra ◽  
Ashu K. Gupta ◽  
Bhanu Pratap Singh ◽  
Mandeep Kaur ◽  
Ashwath Kumar

Abstract Introduction The aim of the current study was to evaluate shear bond strength of resin composite bonded to Theracal LC, Biodentine, and resin-modified glass ionomer cement (RMGIC) using universal adhesive and mode of fracture. Materials and Methods A total of 50 caries-free maxillary and mandibular molars extracted were taken; occlusal cavities were prepared, mounted in acrylic blocks, and divided into five groups based on the liner used. Group 1: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 12 minutes. Group 2: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 14 days. Group 3: RMGIC liner placed into the cavity and bonding agent and resin composite applied immediately. Group 4: RMGIC liner placed into the cavity and bonding agent and resin composite applied after 7 days. Group 5: Theracal LC liner placed into the cavity and bonding agent and resin composite applied immediately. Each sample was bonded to resin composite using universal adhesive. Shear bond strength analysis was performed at a cross-head speed of 0.1 mm/min. Statistical Analysis  Statistical analysis was performed with one-way analysis of variance and posthoc Bonferroni test using SPSS version 22.0. Results and Conclusion Biodentine liner when bonded immediately to resin composite showed minimum shear bond strength. RMGIC when bonded to resin composite after 7 days showed maximum shear bond strength. Mode of fracture was predominantly cohesive in groups having Biodentine and Theracal LC as liner.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Mohammed Hassan ◽  
Ahmed Ali Goda ◽  
Kusai Baroudi

Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials.Methods. A total of 80 sound posterior teeth were used. They were divided into four groups(n=20)according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%). Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one). Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram). Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed byt-test and one-way ANOVA followed by Tukey’spost hoctest.Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength.Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface.


2020 ◽  
Vol 8 (10) ◽  
pp. 454-459
Author(s):  
Bhalla V. ◽  
◽  
K. Goud M. ◽  
Chockattu S. ◽  
Khera A ◽  
...  

Background:Dentin bonding is an ever-evolving field in adhesive dentistry. With the introduction of newer systems into the market, there is a crucial need to test their efficiency in terms of bond strength. Dual-cured adhesives in theory may provide for a better degree of conversion as compared to conventional light-cured adhesives .Thus, the aim of this study was to compare the shear bond strength of three different self-etch adhesives namely ClearfilSE bond (Kuraray), Tetric N Bond Universal (IvoclarVivadent) and Futura Bond DC (Voco) to dentin. Materials & Methods: Ninety extracted non-carious, intact human mandibular molar teeth were selected for this study. Each tooth was decoronated using a double-sided diamond disc with water coolant to a depth of 2mm from the cusp tip .The cut dentin surface was then abraded against 600-grit wet silicon carbide papers for 60 seconds to produce a uniform smear layer. The root portion of each tooth was mounted on a plastic ring using cold cure acrylic resin. Specimens were then divided into three adhesive groups of 30 teeth each, Group A: ClearfilSE Bond (Kuraray), Group B: Tetric N Bond Universal (IvoclarVivadent), Group C :Futura Bond DC (Voco). All bonding agents were used according to the manufacturers’ instructions, in combination with the resin composite Tetric N Ceram (IvoclarVivadent). The samples were thermocycled, followed by shear bond strength testing using a Universal testing machine (Hounsfield). Data were subjected to statistical analysis using one-way analysis of variance (ANOVA) (P<0.05) and Post hoc Tukey’s test for inter- and intra- group analysis respectively. Results: Clearfil SE Bond yielded the highest shear bond strength values (30.9 ±4.66 MPa) which were statistically significant, followed byTetric N Bond Universal group (29.8 ±4.34) and the lowest shear bond strength values were recorded for Futura Bond DC (18.2 ±3.13). Conclusion: Clearfil SE bond and Tetric N bond Universal can be considered as better options than Futura Bond DC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Taksid Charasseangpaisarn ◽  
Pattarawadee Krassanairawiwong ◽  
Chanidapa Sangkanchanavanich ◽  
Atima Kurjirattikan ◽  
Kanyarak Kunyawatyuwapong ◽  
...  

Background and Purpose. Contamination of the lithium disilicate (LDS) during the try-in procedure is unavoidable and may weaken the bond strength of restoration. The purpose of this study was to investigate the efficacy of different surface cleansing agents on the shear bond strength (SBS) of contaminated LDS. Materials and Methods. Seventy LDS specimens were randomly divided into seven groups. The first group was noncontaminated surface (PC). The six other groups were contaminated with the saliva and silicone disclosing medium and treated with no surface cleansing agent (NC); phosphoric acid (PO); Ivoclean (IV); sodium hydroxide solution (NA); Restorative Cleansing Agent (RC); and hydrofluoric acid (HF). Then, LDS specimens were cementated with Panavia V5 to resin composite rod. Each specimen was subjected to an SBS test. The modes of failure was inspected under light microscope. The surface element of each group was examined by SEM-EDS. Results. The results were analyzed with one-way ANOVA and Tamhane’s T2. The mean SBS value of NC was significantly lower than others ( p < 0.05 ), and HF was significantly higher than others ( p < 0.05 ). However, PC, PO, IV, NA, and RC were not significantly different from each other ( p > 0.05 ). The mode of failure was mostly adhesive failure in every group. The surface showed similar amount of elements in every group. Conclusions. The SBS of LDS was reduced by saliva and silicone disclosing medium contamination which can be restored using acid- and alkaline-based surface cleansing agents before the cementation procedure.


2005 ◽  
Vol 93 (5) ◽  
pp. 478-482 ◽  
Author(s):  
Chikahiro Ohkubo ◽  
Hiroyuki Kono ◽  
Yasuhiro Tanaka ◽  
Ikuya Watanabe

Sign in / Sign up

Export Citation Format

Share Document