Sulfonated magnetic nanobiochar as heterogeneous acid catalyst for esterification reaction

2020 ◽  
Vol 8 (4) ◽  
pp. 103912 ◽  
Author(s):  
S.N. Aisyiyah Jenie ◽  
Anis Kristiani ◽  
Sudiyarmanto ◽  
Deni S. Khaerudini ◽  
Kaoru Takeishi
Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Muhammad Hossain ◽  
Md Siddik Bhuyan ◽  
Abul Md Ashraful Alam ◽  
Yong Seo

The aim of this research was to synthesize, characterize, and apply a heterogeneous acid catalyst to optimum biodiesel production from hydrolyzed waste cooking oil via an esterification reaction, to meet society’s future demands. The solid acid catalyst S–TiO2/SBA-15 was synthesized by a direct wet impregnation method. The prepared catalyst was evaluated using analytical techniques, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The statistical analysis of variance (ANOVA) was studied to validate the experimental results. The catalytic effect on biodiesel production was examined by varying the parameters as follows: temperatures of 160 to 220 °C, 20–35 min reaction time, methanol-to-oil mole ratio between 5:1 and 20:1, and catalyst loading of 0.5%–1.25%. The maximum biodiesel yield was 94.96 ± 0.12% obtained under the optimum reaction conditions of 200 °C, 30 min, and 1:15 oil to methanol molar ratio with 1.0% catalyst loading. The catalyst was reused successfully three times with 90% efficiency without regeneration. The fuel properties of the produced biodiesel were found to be within the limits set by the specifications of the biodiesel standard. This solid acid catalytic method can replace the conventional homogeneous catalyzed transesterification of waste cooking oil for biodiesel production.


2006 ◽  
Vol 11-12 ◽  
pp. 69-72
Author(s):  
Joon Ching Juan ◽  
Yarmo Mohd Ambar ◽  
Jing Chang Zhang

The heterogeneous 12-tungstophosphoric acid (HPW) catalyst is becoming important in industrial processes for example in esterification reaction. A novel solid acid catalyst of HPW entrapped on mesoporous silica was synthesized by sol gel technique. Neutral template dodecylamine was introduced to obtain mesopores structure catalyst. The physical and chemical properties of the catalyst were characterized by XRD, nitrogen sorption and FTIR. In conclusion, this new type of mesoporous solid acid catalyst is a very promising heterogeneous acid catalyst for esterification reaction involving bulky molecules such as fatty acid.


2021 ◽  
Vol 21 (5) ◽  
pp. 1111
Author(s):  
Renita Manurung ◽  
Rosdanelli Hasibuan ◽  
Fatimah Batubara ◽  
Handy Inarto ◽  
Alwi Gery Agustan Siregar ◽  
...  

In Indonesia, the composition of waste has gradually changed over time. To reduce expanded polystyrene (EPS) foam waste, we converted it into a heterogeneous acid catalyst, namely Polystyrene Sulfonic Acid (PSSA). The catalyst was then used in an esterification reaction to generate triacetin. In this research, the synthesis of PSSA was performed using a sulfonation reaction with silver sulfate (Ag2SO4) as the catalyst. Based on FTIR analysis, the sulfonation reaction was successful. The use of 0.5% and 1% catalysts led to a significant increase in the degree of sulfonation of PSSA, while there was a relatively constant increase when using 1.5–2.5% catalysts. The highest degree of sulfonation (78.63%) was achieved when the reaction was performed using 2% Ag2SO4 catalyst for 25 min. The PSSA with the highest degree of sulfonation was characterized using X-Ray Diffraction (XRD), SEM-EDX, and BET-BJH. This PSSA had a semi-crystalline structure with a crystallinity of 73.83%, a particle size of 1.75 nm, mesoporous pores with a radius of 16.984 Å, and a sulfur content of 15% (% mass).


Author(s):  
Hewei Yu ◽  
Yunlong Cao ◽  
Heyao Li ◽  
Gaiju Zhao ◽  
Xingyu Zhang ◽  
...  

2014 ◽  
Vol 26 (16) ◽  
pp. 4988-4994
Author(s):  
Jianjun Zhu ◽  
Qiuqing Cui ◽  
Jiangping Peng ◽  
Li Li Zhang ◽  
Zhongqing Jiang ◽  
...  

2019 ◽  
Vol 65 (1) ◽  
pp. 21-27
Author(s):  
Qiuyun Zhang ◽  
Dandan Lei ◽  
Qianqian Luo ◽  
Taoli Deng ◽  
Jingsong Cheng ◽  
...  

Biodiesel was synthesized from oleic acid using Ni (II)-exchanged heteropolyacids immobilized on silica (Ni0.5H3SiW / SiO2 ) as a solid acid catalyst. Based on detailed analyses of FT-IR, XRD, TG and SEM, the structural, surface and thermal stability of Ni0.5H3SiW / SiO2 were investigated. Obtained results demonstrated that the Keggin structure was well in the immobilization process and possess a high thermal stability. Various esterification reaction conditions and reusability of catalyst were studied. High oleic acid conversion of 81.4 % was observed at a 1:22 mole ratio (oleic acid: methanol), 3 wt. % catalyst at 70 °C for 4 h. The Ni0.5H3SiW / SiO2 catalyst was reused for several times and presented relatively stable. More interestingly, the kinetic studies revealed the esterification process was compatible with the first order model, and a lower activation energy was obtained in this catalytic system.


RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3657-3662 ◽  
Author(s):  
Shuolin Zhou ◽  
Dabo Jiang ◽  
Xianxiang Liu ◽  
Yiping Chen ◽  
Dulin Yin

TiO2 nanotubes-bonded organosulfonic acid as a hybrid catalyst exhibited better activity and good reusability for esterification reaction.


Sign in / Sign up

Export Citation Format

Share Document